318 research outputs found

    Variance-based reliability sensitivity with dependent inputs using failure samples

    Full text link
    Reliability sensitivity analysis is concerned with measuring the influence of a system's uncertain input parameters on its probability of failure. Statistically dependent inputs present a challenge in both computing and interpreting these sensitivity indices; such dependencies require discerning between variable interactions produced by the probabilistic model describing the system inputs and the computational model describing the system itself. To accomplish such a separation of effects in the context of reliability sensitivity analysis we extend on an idea originally proposed by Mara and Tarantola (2012) for model outputs unrelated to rare events. We compute the independent (influence via computational model) and full (influence via both computational and probabilistic model) contributions of all inputs to the variance of the indicator function of the rare event. We compute this full set of variance-based sensitivity indices of the rare event indicator using a single set of failure samples. This is possible by considering dd different hierarchically structured isoprobabilistic transformations of this set of failure samples from the original dd-dimensional space of dependent inputs to standard-normal space. The approach facilitates computing the full set of variance-based reliability sensitivity indices with a single set of failure samples obtained as the byproduct of a single run of a sample-based rare event estimation method. That is, no additional evaluations of the computational model are required. We demonstrate the approach on a test function and two engineering problems

    SARS-CoV-2 Infection of Airway Cells

    Get PDF
    In a laboratory setting, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was inoculated into human bronchial epithelial cells

    Mucus clearance in the respiratory tract: A new concept? [Un nouveau concept de mécanisme de clairance respiratoire ?]

    Get PDF
    Dans toutes les muqueuses, respiratoire, gastro-intestinale ou encore celle des voies gĂ©nitales, la prĂ©sence d’un film viscoĂ©lastique de mucus est nĂ©cessaire pour protĂ©ger l’organisme contre l’invasion d’agents pathogĂšnes, qu’il s’agisse de virus, bactĂ©ries ou autres polluants. Ce mucus est constituĂ© principalement de larges glycoprotĂ©ines, appelĂ©es mucines, qui doivent ĂȘtre parfaitement hydratĂ©es pour maintenir les propriĂ©tĂ©s viscoĂ©lastiques du mucus. Dans les voies respiratoires, la couche de mucus sĂ©questre les agents inhalĂ©s et progresse, grĂące aux battements ciliaires des cellules sous-jacentes, vers la glotte. Le mucus est continuellement avalĂ© ou expectorĂ©, ce qui dĂ©finit le mĂ©canisme de clairance pulmonaire. Depuis des dĂ©cennies, le dogme veut que les cellules ciliĂ©es battent librement dans un milieu aqueux et propulsent le mucus qui flotte sur l’épithĂ©lium respiratoire, mais nous avons rĂ©cemment rĂ©futĂ© ce concept dans une Ă©tude publiĂ©e dans Science [1]. En effet, l’ancienne notion ne permet pas d’expliquer l’incidence des plaques de mucus observĂ©es dans les maladies caractĂ©risĂ©es par l’obstruction pulmonaire (par exemple : bronchite chronique, mucoviscidose ou asthme). Notre Ă©tude montre que l’espace pĂ©riciliaire est en fait occupĂ© par de larges glycoprotĂ©ines organisĂ©es de maniĂšre spĂ©cifique en un rĂ©seau ayant une densitĂ© supĂ©rieure Ă  celle de la couche mobile de mucus sus-jacente. Ce rĂ©seau dense de macromolĂ©cules est attachĂ© aux cellules ciliĂ©es et possĂšde les mĂȘmes propriĂ©tĂ©s qu’un gel

    Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins

    Get PDF
    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins

    Accumulation de mucus - Le point de départ de la pathogenÚse pulmonaire chez les patients atteints de mucoviscidose

    Get PDF
    La mucoviscidose (en anglais, cystic fibrosis ou CF) est une maladie gĂ©nĂ©tique grave affectant principalement la population caucasienne dans une proportion d’une naissance sur 4 000. Des mutations du gĂšne codant la protĂ©ine CFTR (cystic fibrosis transmembrane conductance regulator) entraĂźnent des changements de flux ioniques Ă  travers la membrane plasmique de cellules Ă©pithĂ©liales, qui altĂšrent le rĂ©seau de mucines dans plusieurs organes comme les poumons et l’intestin [1-3]. Les mucines polymĂ©riques sont de grandes glycoprotĂ©ines qui organisent la couche de mucus et assurent la lubrification et la protection des muqueuses contre l’invasion d’agents infectieux. Chez les patients atteints de mucoviscidose, le dysfonctionnement du canal ionique CFTR modifie le mucus, qui devient visqueux et adhĂšre aux parois des bronches et du tube digestif. Dans les poumons, l’obstruction des voies aĂ©riennes est propice aux infections bactĂ©riennes [4]. De plus, les propriĂ©tĂ©s antibactĂ©riennes de la couche de mucus sont diminuĂ©es chez des animaux modĂšles dĂ©veloppant certains symptĂŽmes de la maladie [5]. Une infection prĂ©cĂšde gĂ©nĂ©ralement le dĂ©veloppement d’une inflammation, il est tentant de penser qu’une infection prĂ©coce puisse dĂ©clencher la pathogĂ©nĂšse pulmonaire et provoquer une rĂ©action inflammatoire chronique chez les patients atteints de mucoviscidose. A l’appui de cette hypothĂšse, des lĂ©sions pulmonaires causĂ©es par l’inflammation peuvent ĂȘtre dĂ©tectĂ©es trĂšs tĂŽt par imagerie mĂ©dicale fondĂ©e sur la tomodensitomĂ©trie (en anglais, computed tomography ou CT). En effet, 22 % des patients atteints de mucoviscidose prĂ©sentent des lĂ©sions dĂšs l’ñge de 1 an [6]. Les descriptions de la progression de la maladie font donc souvent rĂ©fĂ©rence au cercle vicieux « obstruction-infection-inflammation » (dans cet ordre), car l’inflammation est frĂ©quemment associĂ©e Ă  la prĂ©sence de microorganismes pathogĂšnes. Cependant, notre Ă©tude rĂ©cemment publiĂ©e dans le journal Science Translational Medicine dĂ©montre que l’inflammation prĂ©cĂšde l’infection bactĂ©rienne et que le mucus pourrait ĂȘtre Ă  l’origine de cette rĂ©ponse inflammatoire [7]. L’accumulation de mucus est, de plus, dĂ©tectĂ©e avant les premiers signes de lĂ©sions pulmonaires, suggĂ©rant, lĂ  encore, que les propriĂ©tĂ©s anormales du mucus chez ces patients dĂ©clenchent une rĂ©ponse immunitaire et constituent ainsi le point de dĂ©part de la maladie de la mucoviscidose

    Mucins and CFTR: Their Close Relationship

    Get PDF
    Mucociliary clearance is a critical defense mechanism for the lungs governed by regionally coordinated epithelial cellular activities, including mucin secretion, cilia beating, and transepithelial ion transport. Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, is characterized by failed mucociliary clearance due to abnormal mucus biophysical properties. In recent years, with the development of highly effective modulator therapies, the quality of life of a significant number of people living with CF has greatly improved; however, further understanding the cellular biology relevant to CFTR and airway mucus biochemical interactions are necessary to develop novel therapies aimed at restoring CFTR gene expression in the lungs. In this article, we discuss recent advances of transcriptome analysis at single-cell levels that revealed a heretofore unanticipated close relationship between secretory MUC5AC and MUC5B mucins and CFTR in the lungs. In addition, we review recent findings on airway mucus biochemical and biophysical properties, focusing on how mucin secretion and CFTR-mediated ion transport are integrated to maintain airway mucus homeostasis in health and how CFTR dysfunction and restoration of function affect mucus properties

    Global sensitivity analysis in high dimensions with partial least squares-driven PCEs

    Get PDF
    We develop an efficient method for the computation of variance-based sensitivity indices using a recently introduced latent-variable-based polynomial chaos expansion, which is particularly suitable for high dimensional problems. By back-transforming the surrogate from its latent variable space-basis to the original input variable space-basis, we derive analytical expressions for these sensitivities that only depend on the model coefficients. Thus, once the surrogate model is built, the variance-based sensitivities can be computed at negligible computational cost as no additional sampling is required. The accuracy of the method is demonstrated with a numerical experiment of an elastic truss.This project was supported by the German Research Foundation (DFG) through Grant STR 1140/6-1 under SPP 1886

    Mucus, mucins, and cystic fibrosis

    Get PDF
    Cystic fibrosis (CF) is both the most common and most lethal genetic disease in the Caucasian population. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is characterized by the accumulation of thick, adherent mucus plaques in multiple organs, of which the lungs, gastrointestinal tract and pancreatic ducts are the most commonly affected. A similar pathogenesis cascade is observed in all of these organs: loss of CFTR function leads to altered ion transport, consisting of decreased chloride and bicarbonate secretion via the CFTR channel and increased sodium absorption via epithelial sodium channel upregulation. Mucosa exposed to changes in ionic concentrations sustain severe pathophysiological consequences. Altered mucus biophysical properties and weakened innate defense mechanisms ensue, furthering the progression of the disease. Mucins, the high-molecular-weight glycoproteins responsible for the viscoelastic properties of the mucus, play a key role in the disease but the actual mechanism of mucus accumulation is still undetermined. Multiple hypotheses regarding the impact of CFTR malfunction on mucus have been proposed and are reviewed here. (a) Dehydration increases mucin monomer entanglement, (b) defective Ca2+ chelation compromises mucin expansion, (c) ionic changes alter mucin interactions, and (d) reactive oxygen species increase mucin crosslinking. Although one biochemical change may dominate, it is likely that all of these mechanisms play some role in the progression of CF disease. This article discusses recent findings on the initial cause(s) of aberrant mucus properties in CF and examines therapeutic approaches aimed at correcting mucus properties
    • 

    corecore