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ABSTRACT: We develop an efficient method for the computation of variance-based sensitivity indices
using a recently introduced latent-variable-based polynomial chaos expansion, which is particularly
suitable for high dimensional problems. By back-transforming the surrogate from its latent variable
space-basis to the original input variable space-basis, we derive analytical expressions for these
sensitivities that only depend on the model coefficients. Thus, once the surrogate model is built, the
variance-based sensitivities can be computed at negligible computational cost as no additional sampling
is required. The accuracy of the method is demonstrated with a numerical experiment of an elastic truss.

1. INTRODUCTION

Surrogate models have received much attention due
to their potential of alleviating computational cost
in applications requiring elaborate and expensive
numerical models, see e.g. Hastie et al. (2001);
Forrester et al. (2008); Sudret (2012). The gen-
eral concept of surrogate modelling techniques is
to establish an abstract, parametrized input-output-
relation which has similar properties as the original
model. The parameters of the surrogate model are
determined based on a finite set of original model
evaluations such as to maximize similarity between
the surrogate and the original model according to
a suitable criterion. Subsequently, the surrogate
model can be used to cheaply approximate the orig-
inal model and compute statistics of the ouput or a
quantity of interest derived thereof. In addition to
prediction, surrogates are also useful in efficiently

performing model sensitivity analysis - an other-
wise typically computationally intensive task.

The main contribution of this work is the deriva-
tion of global, variance-based sensitivity measures
for the model output from the coefficients of a re-
cently introduced surrogate format called partial
least squares-driven polynomial chaos expansions
(PLS-PCE) (Papaioannou et al., 2018). PLS-PCE
allows for the application of polynomial chaos ex-
pansions (PCE) in very high dimensions. Pub-
lications by Sudret (2008) and Konakli and Su-
dret (2016) have derived such sensitivity measures
from the model coefficients of conventional PCEs
(Xiu and Karniadakis, 2002) and polynomial-based
canonical decompositions (Chevreuil et al., 2015),
respectively. The paper is structured as follows:
In chapter 2, we review the PLS-PCE surrogate
model, its construction and some important prop-
erties. In chapter 3, we give a brief introduction
to variance-based sensitivity analysis and its appli-
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cation in the context of polynomial basis surrogate
models. In chapter 4, we develop the methodol-
ogy to compute sensitivities based on the model co-
efficients. In chapter 5, we demonstrate the new
method based on two numerical examples and in
chapter 6 we provide some concluding remarks.

2. PARTIAL LEAST SQUARES AND POLYNO-
MIAL CHAOSES

Let XXX be a random vector on the outcome space
Rd with joint CDF FXXX whose elements are mutu-
ally independent and Y (XXX ) = Y ∈ R. If Y is square-
integrable, i.e. EXXX [Y (XXX )2] < ∞, it belongs to a
Hilbert space H with inner product of any two func-
tions g, h ∈H

〈g(XXX ), h(XXX )〉H = EXXX [g(XXX )h(XXX )] (1)

=

∫
Rd

g(xxx)h(xxx) f XXX (xxx)dxxx, (2)

where f XXX (xxx) is the joint PDF of XXX . g and h are
orthogonal if

〈g(xxx), h(xxx)〉H = EXXX [g(XXX )h(XXX )] = 0. (3)

Note, that if g and h can be written as products of
univariate functions of the components of XXX , the
following holds:

〈g(xxx), h(xxx)〉H =
d∏

i=1
EXi [gi (Xi)hi (Xi)]. (4)

2.1. Polynomial Chaos Expansion
Given a complete and orthonormal basis of H,
{hi (XXX ), i ∈ N}, Y may be expressed as a linear com-
bination of the basis functions:

Y = Y (XXX ) =
∞∑

i=0
aihi (XXX ). (5)

Then, since Y ∈H, the approximation

Ŷp = Ŷ (XXX ) =
p∑

i=0
aihi (XXX ) (6)

asymptotically (p → ∞) converges to Y in the
mean-square sense. Henceforth, without loss
of generality, we will consider the case FXXX =

Φd , where Φd denotes the d-variate independent
standard-normal CDF. If the joint PDF of XXX is
known, one can express XXX as a function of stan-
dard normal random variables through an isoprob-
abilistic transformation (Rosenblatt, 1952). Then,
one can construct an orthonormal polynomial basis
of H using products of one-dimensional normalized
Hermite polynomials

Ψkkk (XXX ) =
d∏

i=1
ψki (Xi) (7)

where {ψi (X ), i ∈ N} are the normalized (proba-
bilist) Hermite polynomials and kkk = (k1, . . ., kd) ∈
Nd . The PCE reads

Ŷp =
∑
|kkk |≤p

akkkΨkkk (XXX ) (8)

and the number of basis functions P is given com-
binatorially in terms of the dimensions d and the
largest considered polynomial order p:

P =
(
d+ p

p

)
. (9)

The coefficients aaa are computed through a projec-
tion of Y onto the space spanned by {hi, i = 0, ...,P−
1}, where the projection can be transformed into
an equivalent ordinary least squares (OLS) prob-
lem (Berveiller et al., 2006). Equation (9) indicates
a fast growth of the associated regression problem
with increasing dimension d, rendering PCEs in-
tractable for high-dimensional problems. Sparse
PCE methods have been proposed to relax this con-
straint by solving a modified, L1-regularized least-
squares problem, which penalizes the number of
terms in the expansion and thus reduces P (Blat-
man and Sudret, 2011), also known under the term
’compressive sampling/sensing’). Nevertheless, the
computation of a sparse PCE still requires comput-
ing the entirety of all possible basis elements which
can become a second (combinatorial) bottleneck in
addition to the solution of the regression problem.

2.2. Basis adaptation
In order to adress this problem, one may rotate the
PCE representation onto a new basis defined by
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the new variables ZZZ = QQQT XXX , where QQQ ∈ Rd×d and
QQQTQQQ = III. Then, an equivalent PCE representation
is given by (Tipireddy and Ghanem, 2014)

Ŷ QQQ
p =

∑
|kkk |≤p

bkkkΨkkk (ZZZ ) =
∑
|kkk |≤p

bkkkΨkkk

(
QQQTXXX

)
. (10)

The coordinate transformation allows for the con-
struction of PCEs along dominant directions of the
problem input space, where these directions are de-
fined by linear combinations of the original variable
vector XXX , the coefficients of which are stored in the
rows of QQQ. Then, by retaining only the m < d most
dominant directions in QQQ, one obtains a matrix QQQm
and the corresponding PCE reads

Ŷ QQQm
p =

∑
|kkkm |≤p

bkkkmΨkkkm

(
QQQT

m XXX
)
, (11)

where kkkm ∈ N
m. In the following we discuss briefly

how the most dominant directions can be identi-
fied based on set of original function evaluations
via partial least squares (PLS) and how to find the
adapted PCE coefficients.

2.3. Partial least squares-based PCE
The basic idea of PLS is to find a relationship be-
tween variables XXX and Y based on N observations
of both quantities (Papaioannou et al., 2018). X ∈
RN×d stores observations from XXX and Y ∈ RN×1

stores the corresponding responses, standard PLS
sequentially identifies latent components ttti ∈ R

N×1

such that they are maximally correlated with Y . Af-
ter determining each ttti, standard PLS assumes a
linear relationship between ttti and Y and evaluates
the corresponding coefficient bi of ttti by OLS. After
each sequence, the matrices X and Y are deflated
by the contribution of the i-th PLS-component.
Components are extracted until a certain error cri-
terion is met, which can be formulated e.g. through
the norm of the residual response vector or via
cross-validation.

Nonlinear PLS in turn relaxes the assumption
of a linear relationship between the latent compo-
nent and the response. This introduces an addi-
tional loop into the algorithm for running a Newton-
Raphson procedure, which iterates between the cur-
rent latent component and the response. In the con-
text of PCE the nonlinear relationship between the

{ttti}i=1,...,m and the response is a one-dimensional
Hermite polynomial expansion. The coefficients of
the PLS-driven PCE can be computed simultane-
ously with the latent variable structure as a byprod-
uct of the PLS algorithm. Ultimately, the nonlinear
PCE-driven PLS algorithm, which is detailed in Pa-
paioannou et al. (2018), identifies m latent compo-
nents. For each component, it returns the direction
rrr i and the 1-dimensional PCE along this direction
which is defined by its polynomial order qi and the
coefficient vector aaai. The PLS-PCE reads

Ŷ PLS
m = b0+

m∑
i=1

(aaai)Tψψψqi
[
(rrr i)T X̃XX )

]
, (12)

where b0 = Ê[Y], ψψψqi (XXX ) is a vector function as-
sembling the evaluations of the one-dimensional
Hermite polynomials up to order qi and X̃XX = XXX −
µµµX , where µµµX is the columnwise sample mean of
the training data X .

3. GLOBAL SENSITIVITY ANALYSIS

3.1. Variance-based sensitivity analysis
The idea behind variance-based sensitivity analy-
sis for model outputs Y is to decompose the re-
sponse variance V[Y ] into partial variances, that
are attributable to variable combinations in the in-
put XXX . If X is jointly uniform on [0,1] and its
components are indepedent, this is accomplished
by projecting Y onto a unique, orthogonal basis
w.r.t. the uniform joint density (which is general-
izable to other standard distribution types through
an isoprobabilistic transformation). The represen-
tation of Y is then the Sobol’-Hoeffding decompo-
sition (Sobol’, 1993), which reads:

f (XXX ) = f0+

d∑
i=1

fi (Xi)+
d∑

i=1

d∑
j=i+1

fi j (Xi,X j )

+ · · ·+ f12...d (XXX ). (13)

Here f0 is a constant, the fi are a univariate func-
tions of Xi, the fi j are bivariate functions of Xi and
X j etc.. Each summand in equation (13) represents
the influence of a distinct variable subset of XXX , XXXA
and due to the orthogonality property, the partial
variance associated with A is given immediately by
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V[ fA]. The Sobol’ index is then the ratio of the
partial variance due to fA and the total variance
(Sobol’, 1993):

SY,A = V[ fA]/V[Y ]. (14)

The total-effect index ST (Homma and Saltelli,
1996) is the ratio of the sum of all partial variances
associated with variable combinations of which XXXA
is a subset:

ST
Y,A =

∑
A⊆B
V[ fB]/V[Y ]. (15)

That is, the Sobol’ index measures the influence of
a given subset of input variables without consider-
ing their interaction with variables outside the sub-
set while the total-effect index takes these interac-
tions into account.

3.2. PCE-based sensitivity analysis
A core feature of representing a response Y ∈H as
Ŷ with an orthogonal basis of H lies in the simplic-
ity of finding statistical properties of Ŷ and thus -
if the model accurately represents Y - approximat-
ing statistics of Y . Given the model representation
(8) with P terms, e.g. the first two moments can be
computed as

E[Ŷ ] = a0, V[Ŷ ] =
P−1∑
i=1

a2
i . (16)

Moreover, Sudret (2008) showed that the indices
SŶ,A and ST

Ŷ,A of representation (8) can also be
found merely by postprocessing its coefficients aaa.
For a given subset of the input variables denoted by
the index set A, we define a boolean index vector
IA ∈ {0,1}d s.t. IA

i = 0 if i <A and IA
i = 1 if i ∈A.

In the same way, we define such an index vector for
the j-th row of kkk j s.t. I kkk j

i = 0 if ki j = 0 and I kkk j

i = 1
if ki j > 0. Then, the PCE-based sensitivity indices
read (Sudret, 2008):

ŜŶ,A =
1
V[Ŷ ]

∑
IA=Ikkk j ,
1≤ j≤P−1

a2
j , ŜT

Ŷ,A =
1
V[Ŷ ]

∑
IA⊆Ikkk j ,
1≤ j≤P−1

a2
j .

(17)

4. GLOBAL SENSITIVITY ANALYSIS VIA PLS-
PCE

Here we derive expressions for SŶ and ST
Ŷ

for Ŷ of
the form (12). Note, that the sensitivity indices of
any latent variable component Zi can be obtained
immediately as

SŶ PLS
m ,Zi

= ST
Ŷ PLS
m ,Zi

=

qi∑
j=1

(aaai)2
j

/ m∑
i=1

qi∑
j=1

(aaai)2
j . (18)

The partial variances contributed by each of the la-
tent components, which are given in the numera-
tors of equation (18) serve as a measure for the rel-
evance of the respective components of the PLS-
transformed random vector ZZZ . Here, we are in-
terested in computing sensitivities of Ŷ PLS

m to the
original input vector XXX . To this end, we will de-
rive the equivalent standard PCE format of Ŷ PLS

m .
(Buet-Golfouse, 2015) provide the following multi-
nomial theorem for a normalized probabilist’s Her-
mite polynomial of order k (Theorem 4):

ψ j (sssT XXX ) =
∑
|kkk |= j

√
j!

k1! · k2! . . . kd!

d∏
l=1

skl
l ψ

l (Xl )

=
∑
|kkk |= j

√
j!

k1! · k2! . . . kd!

d∏
l=1

skl
l Ψkkk (XXX ),

(19)

under the condition that ‖sss‖= 1. Within the context
of PLS-based PCE, the vector sss is given by a PLS
direction rrr i. Asymptotically, the sample mean is
zero, i.e.

lim
N→∞

µµµX = 000

and Papaioannou et al. (2018) prove that

lim
N→∞

‖rrr i‖= 1 i = 2, . . .,m,

while ‖rrr1‖= 1 always. That is, in the asymptotic
limit we can use identity (19) to write

Ŷ PLS
m = b0+

m∑
i=1

∑
|kkk |≤qi

aaai
|kkk |

√
|kkk |!

r k1
i1 · r

k2
i2 . . .r

kd
id

√
k1! · k2! . . . kd!

Ψkkk (XXX ).

(20)
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In practice, the sample mean decays towards 0 rela-
tively fast, such that the approximation error intro-
duced by neglecting the variable centering in equa-
tion (20) is typically orders of magnitude smaller
than the leading error introduced by the surrogate
model itself. The error due to ‖rrr i‖, 1 grows with
the number of included components m (with m = 1,
the representation is exact since ‖rrr1‖= 1 always). It
is possible to derive exact expressions with respect
to both non-zero sample mean and non-unit-length
component directions based on expanding the Her-
mite polynomials into a suitable Taylor series and
applying a well-known product theorem for Her-
mite polynomials of scaled variables. Equation (20)
is merely a linear combination of m standard PCEs
each representing a latent component in standard
PCE format such that we can write

Ŷ PLS
m = b0+

∑
|kkk |≤qmax

ckkkΨkkk (XXX ), (21)

where
qmax = max

i∈{1,...,m}
(qi). (22)

The equivalent PCE coefficients ccc then read

ckkk =

m∑
i=1

ai
|kkk |

√
|kkk |!

d∏
l=1

r kl
il
√

kl!
, (23)

where
{
ai
|kkk | : qi < |kkk |

}
= 0. Thus, we can apply the

standard post-processing defined by equations (17)
to format (21) in order to obtain variance-based sen-
sitivity indices as a function of the aaai and rrr i only.
We observe that the index set kkk required for the
PLS-PCE-based sensitivity indices is equivalent to
that of a full PCE formulation of maximum poly-
nomial order qmax . Typically, the additional de-
grees of freedom emerging from the latent vari-
able formulation (i.e. the rrr i) lead to significantly
smaller required polynomial degrees in PLS-PCE
compared to sparse and classical PCE models. That
is, the computational bottleneck of computing kkk
can be relaxed significantly in most applications.
Note, that the presented procedure can be extended
to multivariate output straight-forwardly based on a
similar formulation in combination with the PLS2
algorithm.
In the following, we demonstrate the new sensitiv-
ity indices by means of a numerical experiment.

5. NUMERICAL EXPERIMENT
We consider an elastic truss, which consists of
23 rods, where horizontal and diagonal rods have
cross-sections A1, A2 and Young’s moduli E1, E2,
respectively (Lee and Kwak, 2006). The truss
sustains 6 vertical point loads P1 - P6. It is depicted
in Figure 1 and the input variable definitions are
provided in Table (1).

We compute Sobol’ and total-effect indices

4m 4m 4m 4m 4m 4m

2m

P1P2P3P4P5P6

umax

E1, A1

E1, A1 E2, A2
E2, A2

Figure 1: 2-D truss example.

Table 1: Input variable definitions of the truss example.

Random Distribution Mean Standard
Variable deviation
A1 [m2] Log-Normal 2 ·10−3 2 ·10−4

A2 [m2] Log-Normal 1 ·10−3 1 ·10−4

E1,E2
[Pa]

Log-Normal 2.1 ·1011 2.1 ·1010

P1 - P6
[N]

Gumbel 5.0 ·104 7.5 ·104

for the maximum truss deflection umax . Ref-
erence solutions are obtained via direct Monte
Carlo (DMC) and with the estimators proposed
in (Saltelli et al., 2010) using 106 independent
samples (Figure 2). Moreover, we repeat the
analysis 50 times to find the mean relative error
(Figure 3) and its standard deviation (Figure 4),
where the relative error for a quantity Q is defined
as:

εQ =
|Q−QDMC |

QDMC
. (24)

The PLS-PCE-based sensitivities are compared
both to the reference solution and results from
two conventional polynomial basis surrogate mod-
els (sparse PCE according to Blatman and Sudret
(2011) and low-rank approximations (LRA) ac-
cording to Konakli and Sudret (2016)). Figure 2
indicates good agreement of the PLS-PCE-based
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E1 E2 A1 A2 P1 P2 P3 P4 P5 P6
0.0

0.1

0.2

0.3

0.4
DMC
PCE
LRA
PLS-PCE

E1 E2 A1 A2 P1 P2 P3 P4 P5 P6
0.0

0.1

0.2

0.3

0.4 DMC
PCE
LRA
PLS-PCE

Figure 2: Sobol’ (left) and total-effect (right) indices of
umax obtained with N = 25 model evaluations.

sensitivities with the reference solution. Figure
3 shows all three surrogate-based sensitivity in-
dices are estimated with similar mean relative er-
ror and convergence rate as N increases. Neverthe-
less, the proposed PLS-PCE-based approach leads
to smaller errors compared to the other surrogate
approaches in small sample sizes. Figure 4 indi-
cates the same for the relative error variance.

6. CONCLUSION

This paper facilitates the computation of variance-
based sensitivity indices from PLS-PCE surrogate
models without requiring any additional original or
surrogate model evaluations. A multinomial the-
orem for Hermite polynomials is applied to derive
expressions for the sensitivity measures of the PLS-
PCE model based on the model coefficients in an
aproximate way. Asymptotically, i.e. with the num-
ber of samples N → ∞, the presented estimates
for the Sobol’ and the total-effect indices are ex-
act. The sensitivities have been computed for an
elastic truss model and match the DMC-based ref-
erence solution up to relative errors of ≈ 1%. The

23 24 25 26 27 28

N

10−3

10−2

10−1

100

E[
ε]

Sobol’ index SE1

PCE
LRA
PLS-PCE

23 24 25 26 27 28

N

10−3

10−2

10−1

100

E[
ε]

Total-effect index STE1

PCE
LRA
PLS-PCE

23 24 25 26 27 28

N

10−3

10−2

10−1

100

E[
ε]

Sobol’ index SA1

PCE
LRA
PLS-PCE

23 24 25 26 27 28

N

10−3

10−2

10−1

100

E[
ε]

Total-effect index STA1

PCE
LRA
PLS-PCE

Figure 3: Mean relative errors for the two most influen-
tial inputs E1 and A1, computed with sparse PCE, LRA
and PLS-PCE.
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10−1
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√
V

[ε
]

Total-effect index STA1

PCE
LRA
PLS-PCE

Figure 4: Relative error standard deviation for the
two most influential inputs E1 and A1, computed with
sparse PCE, LRA and PLS-PCE.

results were compared with the ones obtained with
sparse PCE and LRA surrogates and the proposed
approach led to smaller relative errors at small sam-
ple sizes. In a future work, we plan to extend the
formulation to yield exact estimators for the non-
asymptotic case with non-zero input sample mean
and non-normal basis vectors defining the latent
components, i.e. for the case where µX = 0 and
‖rrr i‖, 1.
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