3 research outputs found

    Developmental changes in mental rotation ability and visual perspective-taking in children and adults with Williams Syndrome

    Get PDF
    Williams syndrome (WS) is a genetic disorder caused by the partial deletion of chromosome 7. Individuals with WS have atypical cognitive abilities, such as hypersociability and compromised visuospatial cognition, although the mechanisms underlying these deficits, as well as the relationship between them, remain unclear. Here, we assessed performance in mental rotation (MR) and level 2 visual perspective taking (VPT2) tasks in individuals with and without WS. Individuals with WS obtained lower scores in the VPT2 task than in the MR task. These individuals also performed poorly on both the MR and VPT2 tasks compared with members of a control group. For the individuals in the control group, performance scores improved during development for both tasks, while the scores of those in the WS group improved only in the MR task, and not the VPT2 task. Therefore, we conducted a second experiment to explore the specific cognitive challenges faced by people with WS in the VPT2 task. In addition to asking participants to change their physical location (self-motion), we also asked them to adopt a third-person perspective by imagining that they had moved to a specified location (self-motion imagery). This enabled us to assess their ability to simulate the movement of their own bodies. The performance in the control group improved in both the self-motion and self-motion imagery tasks and both performances were correlated with verbal mental age. However, we did not find any developmental changes in performance for either task in the WS group. Performance scores for the self-motion imagery task in the WS group were low, similar to the scores observed for the VPT2 in this population. These results suggest that MR and VPT2 tasks involve different processes, and that these processes develop differently in people with WS. Moreover, difficulty completing VPT2 tasks may be partly because of an inability of people with WS to accurately simulate mental body motion

    Interspecies interactions are an integral determinant of microbial community dynamics

    Get PDF
    This study investigated the factor that the determine the dynamics of bacterial communities in a complex system using multidisciplinary methods. Since real and engineered microbial ecosystems are too complex, six types of synthetic microbial ecosystems (SMEs) were constructed under chemostat conditions with phenol as the sole carbon and energy source. 2-4 phenol-degrading, phylogenetically and physiologically different bacterial strains were used in each SEM. Phylogeny was based on the nucleotide sequence of 16S rRNA genes, while physiologic traits were based on kinetic and growth parameters on phenol. Two metrics, J parameter and ‘complex interaction’, were compared to predict which strain would become dominant in a SME. The J parameter is calculated from kinetic and growth parameters, whereas ‘complex interaction’, which was developed here, evaluated bacterial community dynamics by measuring specific growth activity as affected by the other strains. The specific growth activity was calculated as the proportion of growth activity under the presence of supernatant compared to control conditions. Population densities of strains used in SMEs were enumerated by real-time PCR targeting the gene encoding the large subunit of phenol hydroxylase and were compared to predictions made from J parameter and complex interaction calculations. In 4 of 6 SEMs tested the final dominant strain shown by real-time PCR analyses coincided with the strain predicted by both the J parameter and the complex interaction. However, in SMEII-2 and SMEII-3 the final dominant Variovorax strains coincided with prediction of the complex interaction but not the J parameter. These results demonstrate that the effects of complex interactions within microbial communities contribute to determining the dynamics of the microbial ecosystem
    corecore