55 research outputs found

    Fabrication and test of a space power boiler feed electromagnetic pump. Part 2: Test facility and performance test

    Get PDF
    A three-phase helical induction electromagnetic pump, designed for the boiler-feed pump of a potassium Rankine-cycle space power system, was built and tested. The pump was tested over a range of potassium temperatures from 900 to 1400 F, flow rates from 0.75 to 4.85 lb/sec, developed pressures up to 340 psi, net positive suction heads (NPSH) from 1 to 22 psi, and NaK coolant temperatures from 800 to 950 F. The maximum efficiency at the pump design point of 3.25 lb/sec flow rate, 240 psi developed pressure, 1000 F potassium inlet temperature, and 800 F NaK coolant temperature was 16.3 percent. The tests also showed successful operation of the pump at an NPSH as low as 1.5 psi without cavitating

    A Conceptual Design Study on the Application of Liquid Metal Heat Transfer Technology to the Solar Thermal Power Plant

    Get PDF
    Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver

    A Conceptual Design Study of a High Temperature Solar Thermal Receiver

    Get PDF
    A conceptual design was made for a solar thermal receiver capable of operation in the 1095 to 1650 C (2000 to 3000 F) temperature range. This receiver is designed for use with a two-axis paraboloidal concentrator in the 25 to 150 kW sub t power range, and is intended for industrial process heat, Brayton engines, or chemical/fuels reactions. Three concepts were analyzed parametrically. One was selected for conceptual design. Its key feature is a helical coiled tube of sintered silicon nitride which serves as the heat exchanger between the incident solar radiation and the working fluid. A mechanical design of this concept was prepared, and both thermal and stress analysis performed. The analysis showed good performance, low potential cost in mass production, and adaptability to both Brayton cycle engines and chemical/fuels production

    A randomized trial to examine the mechanisms of cognitive, behavioral and mindfulness-based psychosocial treatments for chronic pain: study protocol

    No full text
    This randomized trial will evaluate the mechanisms of three chronic pain treatments: cognitive therapy (CT), mindfulness meditation (MM), and activation skills (AS). We will determine the extent to which late-treatment improvement in primary outcome (pain interference) is predicted by early-treatment changes in cognitive content, cognitive process, and/or activity level. The shared versus specific role of these mechanisms across the three treatments will be evaluated during treatment (Primary Aim), and immediately post-treatment to examine relapse mechanisms (Secondary Aim). We will enroll 300 individuals with chronic pain (with low back pain as a primary or secondary condition), with 240 projected to complete the study. Participants will be randomly assigned to eight, 1.5 h telehealth group sessions of CT, MM, or AS. Mechanisms and outcomes will be assessed twice daily during 2-week baseline, 4-week treatment period, and 4-week post-treatment epoch via random cue-elicited ecological momentary assessment (EMA); activity level will be monitored during these time epochs via daily monitoring with ActiGraph technology. The primary outcome will be measured by the PROMIS 5-item Pain Interference scale. Structural equation modeling (SEM) will be used to test the primary aims. This study is pre-registered on clinicaltrials.gov (Identifier: NCT03687762). This study will determine the temporal sequence of lagged mediation effects to evaluate rates of change in outcome as a function of change in mediators. The findings will provide an empirical basis for enhancing and streamlining psychosocial chronic pain interventions. Further, results will guide future efforts towards optimizing maintenance of gains to effectively reduce relapse risk
    corecore