3,373 research outputs found
Virasoro constraints and the Chern classes of the Hodge bundle
We analyse the consequences of the Virasoro conjecture of Eguchi, Hori and
Xiong for Gromov-Witten invariants, in the case of zero degree maps to the
manifolds CP^1 and CP^2 (or more generally, smooth projective curves and smooth
simply-connected projective surfaces). We obtain predictions involving
intersections of psi and lambda classes on the compactification of M_{g,n}. In
particular, we show that the Virasoro conjecture for CP^2 implies the numerical
part of Faber's conjecture on the tautological Chow ring of M_g.Comment: 12 pages, latex2
N=4 Superconformal Algebra and the Entropy of HyperKahler Manifolds
We study the elliptic genera of hyperKahler manifolds using the
representation theory of N=4 superconformal algebra. We consider the
decomposition of the elliptic genera in terms of N=4 irreducible characters,
and derive the rate of increase of the multiplicities of half-BPS
representations making use of Rademacher expansion. Exponential increase of the
multiplicity suggests that we can associate the notion of an entropy to the
geometry of hyperKahler manifolds. In the case of symmetric products of K3
surfaces our entropy agrees with the black hole entropy of D5-D1 system.Comment: 25 pages, 1 figur
Comments on Non-holomorphic Modular Forms and Non-compact Superconformal Field Theories
We extend our previous work arXiv:1012.5721 [hep-th] on the non-compact N=2
SCFT_2 defined as the supersymmetric SL(2,R)/U(1)-gauged WZW model. Starting
from path-integral calculations of torus partition functions of both the
axial-type (`cigar') and the vector-type (`trumpet') models, we study general
models of the Z_M-orbifolds and M-fold covers with an arbitrary integer M. We
then extract contributions of the degenerate representations (`discrete
characters') in such a way that good modular properties are preserved. The
`modular completion' of the extended discrete characters introduced in
arXiv:1012.5721 [hep-th] are found to play a central role as suitable building
blocks in every model of orbifolds or covering spaces. We further examine a
large M-limit (the `continuum limit'), which `deconstructs' the spectral flow
orbits while keeping a suitable modular behavior. The discrete part of
partition function as well as the elliptic genus is then expanded by the
modular completions of irreducible discrete characters, which are parameterized
by both continuous and discrete quantum numbers modular transformed in a mixed
way. This limit is naturally identified with the universal cover of trumpet
model. We finally discuss a classification of general modular invariants based
on the modular completions of irreducible characters constructed above.Comment: 1+40 pages, no figure; v2 some points are clarified with respect to
the `continuum limit', typos corrected, to appear in JHEP; v3 footnotes added
in pages 18, 23 for the relation with arXiv:1407.7721[hep-th
Non-Renormalization Theorems in Non-Renormalizable Theories
A perturbative non-renormalization theorem is presented that applies to
general supersymmetric theories, including non-renormalizable theories in which
the integrand is an arbitrary gauge-invariant function
of the chiral superfields and gauge field-strength
superfields , and the -integrand is restricted only by gauge
invariance. In the Wilsonian Lagrangian, is unrenormalized except
for the one-loop renormalization of the gauge coupling parameter, and
Fayet-Iliopoulos terms can be renormalized only by one-loop graphs, which
cancel if the sum of the U(1) charges of the chiral superfields vanishes. One
consequence of this theorem is that in non-renormalizable as well as
renormalizable theories, in the absence of Fayet-Iliopoulos terms supersymmetry
will be unbroken to all orders if the bare superpotential has a stationary
point.Comment: 13 pages (including title page), no figures. Vanilla LaTe
On the Genus Two Free Energies for Semisimple Frobenius Manifolds
We represent the genus two free energy of an arbitrary semisimple Frobenius
manifold as a sum of contributions associated with dual graphs of certain
stable algebraic curves of genus two plus the so-called "genus two G-function".
Conjecturally the genus two G-function vanishes for a series of important
examples of Frobenius manifolds associated with simple singularities as well as
for -orbifolds with positive Euler characteristics. We explain the
reasons for such Conjecture and prove it in certain particular cases.Comment: 37 pages, 3 figures, V2: the published versio
The non-compact elliptic genus: mock or modular
We analyze various perspectives on the elliptic genus of non-compact
supersymmetric coset conformal field theories with central charge larger than
three. We calculate the holomorphic part of the elliptic genus via a free field
description of the model, and show that it agrees with algebraic expectations.
The holomorphic part of the elliptic genus is directly related to an
Appell-Lerch sum and behaves anomalously under modular transformation
properties. We analyze the origin of the anomaly by calculating the elliptic
genus through a path integral in a coset conformal field theory. The path
integral codes both the holomorphic part of the elliptic genus, and a
non-holomorphic remainder that finds its origin in the continuous spectrum of
the non-compact model. The remainder term can be shown to agree with a function
that mathematicians introduced to parameterize the difference between mock
theta functions and Jacobi forms. The holomorphic part of the elliptic genus
thus has a path integral completion which renders it non-holomorphic and
modular.Comment: 13 page
Superconformal Algebras and Mock Theta Functions
It is known that characters of BPS representations of extended superconformal
algebras do not have good modular properties due to extra singular vectors
coming from the BPS condition. In order to improve their modular properties we
apply the method of Zwegers which has recently been developed to analyze
modular properties of mock theta functions. We consider the case of N=4
superconformal algebra at general levels and obtain the decomposition of
characters of BPS representations into a sum of simple Jacobi forms and an
infinite series of non-BPS representations.
We apply our method to study elliptic genera of hyper-Kahler manifolds in
higher dimensions. In particular we determine the elliptic genera in the case
of complex 4 dimensions of the Hilbert scheme of points on K3 surfaces K^{[2]}
and complex tori A^{[[3]]}.Comment: 28 page
Bounds for State Degeneracies in 2D Conformal Field Theory
In this note we explore the application of modular invariance in
2-dimensional CFT to derive universal bounds for quantities describing certain
state degeneracies, such as the thermodynamic entropy, or the number of
marginal operators. We show that the entropy at inverse temperature 2 pi
satisfies a universal lower bound, and we enumerate the principal obstacles to
deriving upper bounds on entropies or quantum mechanical degeneracies for fully
general CFTs. We then restrict our attention to infrared stable CFT with
moderately low central charge, in addition to the usual assumptions of modular
invariance, unitarity and discrete operator spectrum. For CFT in the range
c_left + c_right < 48 with no relevant operators, we are able to prove an upper
bound on the thermodynamic entropy at inverse temperature 2 pi. Under the same
conditions we also prove that a CFT can have a number of marginal deformations
no greater than ((c_left + c_right) / (48 - c_left - c_right)) e^(4 Pi) - 2.Comment: 23 pages, LaTeX, minor change
Large spin-orbit splitting and weakly-anisotropic superconductivity revealed with single-crystalline noncentrosymmetric CaIrSi3
We report normal and superconducting properties of the Rashba-type
noncentrosymmetric com- pound CaIrSi3, using single crystalline samples with
nearly 100% superconducting volume fraction. The electronic density of states
revealed by the hard x-ray photoemission spectroscopy can be well explained by
the relativistic first-principle band calculation. This indicates that strong
spin-orbit interaction indeed affects the electronic states of this compound.
The obtained H - T phase diagram exhibits only approximately 10% anisotropy,
indicating that the superconducting properties are almost three dimensional.
Nevertheless, strongly anisotropic vortex pinning is observed.Comment: 8 pages, 6 figures, 1 table, accepted for publication in Phys. Rev.
Non-holomorphic Modular Forms and SL(2,R)/U(1) Superconformal Field Theory
We study the torus partition function of the SL(2,R)/U(1) SUSY gauged WZW
model coupled to N=2 U(1) current. Starting from the path-integral formulation
of the theory, we introduce an infra-red regularization which preserves good
modular properties and discuss the decomposition of the partition function in
terms of the N=2 characters of discrete (BPS) and continuous (non-BPS)
representations. Contrary to our naive expectation, we find a non-holomorphic
dependence (dependence on \bar{\tau}) in the expansion coefficients of
continuous representations. This non-holomorphicity appears in such a way that
the anomalous modular behaviors of the discrete (BPS) characters are
compensated by the transformation law of the non-holomorphic coefficients of
the continuous (non-BPS) characters. Discrete characters together with the
non-holomorphic continuous characters combine into real analytic Jacobi forms
and these combinations exactly agree with the "modular completion" of discrete
characters known in the theory of Mock theta functions \cite{Zwegers}.
We consider this to be a general phenomenon: we expect to encounter
"holomorphic anomaly" (\bar{\tau}-dependence) in string partition function on
non-compact target manifolds. The anomaly occurs due to the incompatibility of
holomorphy and modular invariance of the theory. Appearance of
non-holomorphicity in SL(2,R)/U(1) elliptic genus has recently been observed by
Troost \cite{Troost}.Comment: 39+1 pages, no figure; v2 a reference added, some points are
clarified, typos corrected, version to appear in JHE
- …