research

Non-Renormalization Theorems in Non-Renormalizable Theories

Abstract

A perturbative non-renormalization theorem is presented that applies to general supersymmetric theories, including non-renormalizable theories in which the d2θ\int d^2\theta integrand is an arbitrary gauge-invariant function F(Φ,W)F(\Phi,W) of the chiral superfields Φ\Phi and gauge field-strength superfields WW, and the d4θ\int d^4\theta-integrand is restricted only by gauge invariance. In the Wilsonian Lagrangian, F(Φ,W)F(\Phi,W) is unrenormalized except for the one-loop renormalization of the gauge coupling parameter, and Fayet-Iliopoulos terms can be renormalized only by one-loop graphs, which cancel if the sum of the U(1) charges of the chiral superfields vanishes. One consequence of this theorem is that in non-renormalizable as well as renormalizable theories, in the absence of Fayet-Iliopoulos terms supersymmetry will be unbroken to all orders if the bare superpotential has a stationary point.Comment: 13 pages (including title page), no figures. Vanilla LaTe

    Similar works

    Available Versions

    Last time updated on 01/04/2019