research

Superconformal Algebras and Mock Theta Functions

Abstract

It is known that characters of BPS representations of extended superconformal algebras do not have good modular properties due to extra singular vectors coming from the BPS condition. In order to improve their modular properties we apply the method of Zwegers which has recently been developed to analyze modular properties of mock theta functions. We consider the case of N=4 superconformal algebra at general levels and obtain the decomposition of characters of BPS representations into a sum of simple Jacobi forms and an infinite series of non-BPS representations. We apply our method to study elliptic genera of hyper-Kahler manifolds in higher dimensions. In particular we determine the elliptic genera in the case of complex 4 dimensions of the Hilbert scheme of points on K3 surfaces K^{[2]} and complex tori A^{[[3]]}.Comment: 28 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019