4,700 research outputs found

    Comments on geometric and universal open string tachyons near fivebranes

    Get PDF
    In a recent paper (hep-th/0703157), Sen studied unstable D-branes in NS5-branes backgrounds and argued that in the strong curvature regime the universal open string tachyon (on D-branes of the wrong dimensionality) and the geometric tachyon (on D-branes that are BPS in flat space but not in this background) may become equivalent. We study in this note an example of a non-BPS suspended D-brane vs. a BPS D-brane at equal distance between two fivebranes. We use boundary worldsheet CFT methods to show that these two unstable branes are identical.Comment: 8 pages, 1 figure; ver. 2 to appear in JHEP: one comment, refs and appendices adde

    Comments on Non-holomorphic Modular Forms and Non-compact Superconformal Field Theories

    Full text link
    We extend our previous work arXiv:1012.5721 [hep-th] on the non-compact N=2 SCFT_2 defined as the supersymmetric SL(2,R)/U(1)-gauged WZW model. Starting from path-integral calculations of torus partition functions of both the axial-type (`cigar') and the vector-type (`trumpet') models, we study general models of the Z_M-orbifolds and M-fold covers with an arbitrary integer M. We then extract contributions of the degenerate representations (`discrete characters') in such a way that good modular properties are preserved. The `modular completion' of the extended discrete characters introduced in arXiv:1012.5721 [hep-th] are found to play a central role as suitable building blocks in every model of orbifolds or covering spaces. We further examine a large M-limit (the `continuum limit'), which `deconstructs' the spectral flow orbits while keeping a suitable modular behavior. The discrete part of partition function as well as the elliptic genus is then expanded by the modular completions of irreducible discrete characters, which are parameterized by both continuous and discrete quantum numbers modular transformed in a mixed way. This limit is naturally identified with the universal cover of trumpet model. We finally discuss a classification of general modular invariants based on the modular completions of irreducible characters constructed above.Comment: 1+40 pages, no figure; v2 some points are clarified with respect to the `continuum limit', typos corrected, to appear in JHEP; v3 footnotes added in pages 18, 23 for the relation with arXiv:1407.7721[hep-th

    Melting Crystal, Quantum Torus and Toda Hierarchy

    Full text link
    Searching for the integrable structures of supersymmetric gauge theories and topological strings, we study melting crystal, which is known as random plane partition, from the viewpoint of integrable systems. We show that a series of partition functions of melting crystals gives rise to a tau function of the one-dimensional Toda hierarchy, where the models are defined by adding suitable potentials, endowed with a series of coupling constants, to the standard statistical weight. These potentials can be converted to a commutative sub-algebra of quantum torus Lie algebra. This perspective reveals a remarkable connection between random plane partition and quantum torus Lie algebra, and substantially enables to prove the statement. Based on the result, we briefly argue the integrable structures of five-dimensional N=1\mathcal{N}=1 supersymmetric gauge theories and AA-model topological strings. The aforementioned potentials correspond to gauge theory observables analogous to the Wilson loops, and thereby the partition functions are translated in the gauge theory to generating functions of their correlators. In topological strings, we particularly comment on a possibility of topology change caused by condensation of these observables, giving a simple example.Comment: Final version to be published in Commun. Math. Phys. . A new section is added and devoted to Conclusion and discussion, where, in particular, a possible relation with the generating function of the absolute Gromov-Witten invariants on CP^1 is commented. Two references are added. Typos are corrected. 32 pages. 4 figure

    Superconformal Algebras and Mock Theta Functions

    Full text link
    It is known that characters of BPS representations of extended superconformal algebras do not have good modular properties due to extra singular vectors coming from the BPS condition. In order to improve their modular properties we apply the method of Zwegers which has recently been developed to analyze modular properties of mock theta functions. We consider the case of N=4 superconformal algebra at general levels and obtain the decomposition of characters of BPS representations into a sum of simple Jacobi forms and an infinite series of non-BPS representations. We apply our method to study elliptic genera of hyper-Kahler manifolds in higher dimensions. In particular we determine the elliptic genera in the case of complex 4 dimensions of the Hilbert scheme of points on K3 surfaces K^{[2]} and complex tori A^{[[3]]}.Comment: 28 page

    Surface Shubnikov-de Hass oscillations and non-zero Berry phases of the topological hole conduction in Tl1x_{1-x}Bi1+x_{1+x}Se2_2

    Get PDF
    We report the observation of two-dimensional Shubnikov-de Hass (SdH) oscillations in the topological insulator Tl1x_{1-x}Bi1+x_{1+x}Se2_2. Hall effect measurements exhibited electron-hole inversion in samples with bulk insulating properties. The SdH oscillations accompanying the hole conduction yielded a large surface carrier density of ns=5.1×1012n_{\rm{s}}=5.1 \times10^{12}/cm2^2, with the Landau-level fan diagram exhibiting the π\pi Berry phase. These results showed the electron-hole reversibility around the in-gap Dirac point and the hole conduction on the surface Dirac cone without involving the bulk metallic conduction.Comment: 5 pages, 4 figure

    Seiberg-Witten Curve for the E-String Theory

    Get PDF
    We construct the Seiberg-Witten curve for the E-string theory in six-dimensions. The curve is expressed in terms of affine E_8 characters up to level 6 and is determined by using the mirror-type transformation so that it reproduces the number of holomorphic curves in the Calabi-Yau manifold and the amplitudes of N=4 U(n) Yang-Mills theory on 1/2 K3. We also show that our curve flows to known five- and four-dimensional Seiberg-Witten curves in suitable limits.Comment: 18 pages, 1 figure; appendix C adde

    N=4 Superconformal Algebra and the Entropy of HyperKahler Manifolds

    Full text link
    We study the elliptic genera of hyperKahler manifolds using the representation theory of N=4 superconformal algebra. We consider the decomposition of the elliptic genera in terms of N=4 irreducible characters, and derive the rate of increase of the multiplicities of half-BPS representations making use of Rademacher expansion. Exponential increase of the multiplicity suggests that we can associate the notion of an entropy to the geometry of hyperKahler manifolds. In the case of symmetric products of K3 surfaces our entropy agrees with the black hole entropy of D5-D1 system.Comment: 25 pages, 1 figur

    Givental formula in terms of Virasoro operators

    Full text link
    We present a conjecture that the universal enveloping algebra of differential operators \frac{\p}{\p t_k} over C\mathbb{C} coincides in the origin with the universal enveloping algebra of the (Borel subalgebra of) Virasoro generators from the Kontsevich model. Thus, we can decompose any (pseudo)differential operator to a combination of the Virasoro operators. Using this decomposition we present the r.h.s. of the Givental formula math.AG/0008067 as a constant part of the differential operator we introduce. In the case of CP1\mathbb{CP}^1 studied in hep-th/0103254, the l.h.s. of the Givental formula is a unit, which imposes certain constraints on this differential operator. We explicitly check that these constraints are correct up to O(q4)O(q^4). We also propose a conjecture of factorization modulo Hirota equation of the differential operator introduced and check this conjecture with the same accuracy.Comment: LaTeX, 11 pages, Some typos correcte

    The non-compact elliptic genus: mock or modular

    Get PDF
    We analyze various perspectives on the elliptic genus of non-compact supersymmetric coset conformal field theories with central charge larger than three. We calculate the holomorphic part of the elliptic genus via a free field description of the model, and show that it agrees with algebraic expectations. The holomorphic part of the elliptic genus is directly related to an Appell-Lerch sum and behaves anomalously under modular transformation properties. We analyze the origin of the anomaly by calculating the elliptic genus through a path integral in a coset conformal field theory. The path integral codes both the holomorphic part of the elliptic genus, and a non-holomorphic remainder that finds its origin in the continuous spectrum of the non-compact model. The remainder term can be shown to agree with a function that mathematicians introduced to parameterize the difference between mock theta functions and Jacobi forms. The holomorphic part of the elliptic genus thus has a path integral completion which renders it non-holomorphic and modular.Comment: 13 page
    corecore