71 research outputs found

    Scalar multi-wormholes

    Get PDF
    In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of General Relativity. In this paper we extend the Bach-Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of NN wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as `struts' and `membranes', that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spacetime has a complicated topological structure. Namely, in the spacetime there exist 2N2^N asymptotically flat regions connected by throats.Comment: 11 pages, 13 figure

    Application of RGB-synthesis for complex interpretation of geophysical data in the study of areas contaminated by oil products

    Get PDF
    The information on geological structure as well as on the degree of contamination and geometrical parameters of a pollutant in oil-contaminated areas is necessary for risk assessment, planning of oil products recovery and territory remediation. Geophysical methods are actively used for solving such problems. The work considers the site on the Volga River bank, where soils are contaminated with petroleum products. The aim of the work is to delineate the distribution area of petroleum products. In order to achieve the goal, the set of near-surface geophysical methods (vertical electric sounding, seismic survey) and gas geochemistry were implemented. The results of a new approach to characterization of contaminated sites by RGB-data synthesis have been demonstrated as one of the ways of data interpretation. The method is based on the generalization of the available materials by optically mixing of the data of three spatially distributed characteristics presented in the form of three channels – red, green, and blue – for the purpose of localizing the lenses of gravity-mobile and immobilized oil products. According to the results of the qualitative interpretation of geophysical information, the authors have built a scheme with the proposed contour of oil products distribution in the studied territory. The proposed method can be used for the delineation of oil spills along with the sufficient information obtained by geophysical or other methods (at least three) at the stage of determining the spread of contamination for the sites. This approach can speed up the interpretation process, as such maps overlaying sets the color distribution of different petrophysical characteristics of the soils for the selected depth level, and also eases the task of determination of coordinates when correlating various anomalies, identified by different methods

    Distribution of species from the genus Panorpa (Mecoptera, Panorpidae) in European Russia except the Caucasus

    Get PDF
    The study of the insect distribution in geographical areas is relevant since it is important in terms of understanding the global trend of biodiversity decline. The paper presents the results of a study on the distribution of six species of Panorpidae (Mecoptera), carried out in 2008, 2009, 2011, 2015, 2017–2020. One part of data was collected by the authors. Other material was provided by colleagues from 11 regions in Russia. In European Russia, six species of Panorpa are reliably known, namely Panorpa alpina, P. cognata, P. communis, P. germanica, P. hybrida, and P. vulgaris. The most common and frequently encountered species are P. communis (in 21 regions), P. hybrida (in 12 regions), P. vulgaris (in 11 regions), and P. cognata (in 11 regions). It is assumed that all studied species can be found in other regions of European Russia as a result of further investigations. Among the studied species, P. alpina and P. germanica are the rarest species, recorded from two and one regions, respectively. Panorpa vulgaris was found for the first time in Russia

    Ocean-bottom seismographs based on broadband MET sensors: architecture and deployment case study in the Arctic

    Get PDF
    The Arctic seas are now of particular interest due to their prospects in terms of hydrocarbon extraction, development of marine transport routes, etc. Thus, various geohazards, including those related to seismicity, require detailed studies, especially by instrumental methods. This paper is devoted to the ocean-bottom seismographs (OBS) based on broadband molecular–electronic transfer (MET) sensors and a deployment case study in the Laptev Sea. The purpose of the study is to introduce the architecture of several modifications of OBS and to demonstrate their applicability in solving different tasks in the framework of seismic hazard assessment for the Arctic seas. To do this, we used the first results of several pilot deployments of the OBS developed by Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS) and IP Ilyinskiy A.D. in the Laptev Sea that took place in 2018–2020. We highlighted various seismological applications of OBS based on broadband MET sensors CME-4311 (60 s) and CME-4111 (120 s), including the analysis of ambient seismic noise, registering the signals of large remote earthquakes and weak local microearthquakes, and the instrumental approach of the site response assessment. The main characteristics of the broadband MET sensors and OBS architectures turned out to be suitable for obtaining high-quality OBS records under the Arctic conditions to solve seismological problems. In addition, the obtained case study results showed the prospects in a broader context, such as the possible influence of the seismotectonic factor on the bottom-up thawing of subsea permafrost and massive methane release, probably from decaying hydrates and deep geological sources. The described OBS will be actively used in further Arctic expeditions

    Modeling of GERDA Phase II data

    Get PDF
    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ0\nu\beta\beta) decay of 76^{76}Ge. The technological challenge of GERDA is to operate in a "background-free" regime in the region of interest (ROI) after analysis cuts for the full 100\,kg\cdotyr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around QββQ_{\beta\beta} for the 0νββ0\nu\beta\beta search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ2\nu\beta\beta) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for GERDA Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.040.85+0.7810316.04^{+0.78}_{-0.85} \cdot 10^{-3}\,cts/(kg\cdotkeV\cdotyr) for the enriched BEGe data set and 14.680.52+0.4710314.68^{+0.47}_{-0.52} \cdot 10^{-3}\,cts/(kg\cdotkeV\cdotyr) for the enriched coaxial data set. These values are similar to the one of Gerda Phase I despite a much larger number of detectors and hence radioactive hardware components

    Status of the harbour seal (<i>Phoca vitulina</i>) along the Murman coast of Russia

    No full text
    Harbour seals are observed along the Murmansk coast of Russia, but they are not very abundant there. The estimated abundance for this area was about 500 individuals in 1998. The number of seals observed during winter months is less than during summer. During summer, the main habitats are the Pechenga inlet, the Motovsky and Kola Bays of the Western Murman coast and the Ivanovskaya Bay in the Eastern Murman coast. The Ivanovskaya Bay was thought to be the easternmost breeding colony of the subspecies Phoca vitulina vitulina. However, recent sightings may indicate the establishment of a breeding site further to the east, which then becomes the easternmost known habitat for this subspecies. A substantial, recent decrease in abundance has been observed in the Ivanovskaya Bay. The population numbered about 120 seals in the early 1990s, but only about 20 seals were seen in 2007 and 2008. It is presumed that the reasons for this reduction include hunting, fishery by-catch, disturbance and depletion of the food supply in this semi-enclosed inlet. A gender-specific daily activity pattern was observed in the IvanovskayaBay. The highest number of single animals (primarily adult males) hauled out during mid day, while hauled out females with pups showed two peaks per day associated with low tides
    corecore