6 research outputs found

    The detailed corrosion performance of bioresorbable Mg-0.8Ca alloy in physiological solutions

    No full text
    The electrochemical behaviour of biodegradable magnesium alloy Mg-0.8Ca was evaluated in a mammalian cell culture medium (MEM) and NaCl solutions (0.9 wt.%, 0.3 wt.%) using traditional (EIS, PDP, OCP) and local scanning electrochemical (SVET, SIET with pH-selective microelectrode) methods at the micro- and meso-level. Corrosion rates of samples in two different media were determined using weight loss tests. The influence of testing media components, alloy composition and microstructure on the material's degradation process was determined. The SVET/SIET test parameters were optimized for in vitro investigation of the bioresorbable material surface. The mechanism of the alloy's bioresorption was suggested. The effect of microsized phases on the corrosion behaviour of the alloy was proved using complementary in situ monitoring and SKPFM measurements. The rapid degradation rate of the alloy is related to the presence of local microgalvanic cells formed by cathodic α-magnesium matrix and anodic Mg2Ca phase. The highest corrosion activity was revealed in the first 12 min of sample exposure to MEM, followed by stabilization of corrosion process due to the material's passivation. Using SEM-EDX analysis, micro-Raman spectroscopy and XPS analysis the composition of the corrosion products was determined. Degradation in MEM proceeds with a formation of magnesium-and-carbonate substituted hydroxyapatite-containing film on the sample's surface. The low possibility of application of Mg-0.8Ca alloy without coating protection in implant surgery was highlighted

    Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations

    Get PDF
    The plasma electrolytic oxidation is an innovative method for the surface treatment of titanium and its alloys. This review provides an overview of the historical development of the process and summarizes the current state of the art. The chemical as well as the electro- and plasma-chemical basics of the layer forming mechanisms, which comprises the substrate/electrolyte interface before discharge initiation and the different types and stages of plasma electrolytic discharge phenomena are explained within the context of titanium-based materials. How these phenomena can be influenced by the use of suitable electrolytes and controlled by the electrical regime is described. Subsequently, the microstructures and composition of the layers are described in detail, and the properties for specific applications are then discussed. The resistance of a PEO coating to corrosive environments, tribological factors, and alternating mechanical stress is viewed critically, and the extensive functional properties such as physiological compatibility, photocatalytic activity, and decorative properties are revealed. Finally, examples of various practical applications in the medical engineering, aviation, automotive, and environmental technology fields, as well as other branches of industry, are presented
    corecore