6 research outputs found

    A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players

    Get PDF
    Pickering, C, Suraci, B, Semenova, EA, Boulygina, EA, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Leońska-Duniec, A, Pająk, B, Chycki, J, Moska, W, Lulińska-Kuklik, E, Dornowski, M, Maszczyk, A, Bradley, B, Kana-ah, A, Cięszczyk, P, Generozov, EV, and Ahmetov, II. A genome-wide association study of sprint performance in elite youth football players. J Strength Cond Res XX(X): 000-000, 2019-Sprint speed is an important component of football performance, with teams often placing a high value on sprint and acceleration ability. The aim of this study was to undertake the first genome-wide association study to identify genetic variants associated with sprint test performance in elite youth football players and to further validate the obtained results in additional studies. Using micro-array data (600 K-1.14 M single nucleotide polymorphisms [SNPs]) of 1,206 subjects, we identified 12 SNPs with suggestive significance after passing replication criteria. The polymorphism rs55743914 located in the PTPRK gene was found as the most significant for 5-m sprint test (p = 7.7 × 10). Seven of the discovered SNPs were also associated with sprint test performance in a cohort of 126 Polish women, and 4 were associated with power athlete status in a cohort of 399 elite Russian athletes. Six SNPs were associated with muscle fiber type in a cohort of 96 Russian subjects. We also examined genotype distributions and possible associations for 16 SNPs previously linked with sprint performance. Four SNPs (AGT rs699, HSD17B14 rs7247312, IGF2 rs680, and IL6 rs1800795) were associated with sprint test performance in this cohort. In addition, the G alleles of 2 SNPs in ADRB2 (rs1042713 & rs1042714) were significantly over-represented in these players compared with British and European controls. These results suggest that there is a genetic influence on sprint test performance in footballers, and identifies some of the genetic variants that help explain this influence

    Diagnosis and antibiotic therapy of nosocomial pneumonia in adults: from recommendations to real practice. A review

    No full text
    Nosocomial pneumonia is a healthcare-associated infection with significant consequences for the patient and the healthcare system. The efficacy of treatment significantly depends on the timeliness and adequacy of the antibiotic therapy regimen. The growth of resistance of gram-negative pathogens of nosocomial pneumonia to antimicrobial agents increases the risk of prescribing inadequate empirical therapy, which worsens the results of patient treatment. Identification of risk factors for infection with multidrug-resistant microorganisms, careful local microbiological monitoring with detection of resistance mechanisms, implementation of antimicrobial therapy control strategy and use of rational combinations of antibacterial drugs are of great importance. In addition, the importance of using new drugs with activity against carbapenem-resistant strains, including ceftazidime/aviabactam, must be understood. This review outlines the current data on the etiology, features of diagnosis and antibacterial therapy of nosocomial pneumonia

    Genome-wide association study identifies three novel genetic markers associated with elite endurance performance

    No full text
    To investigate the association between multiple single-nucleotide polymorphisms (SNPs), aerobic performance and elite endurance athlete status in Russians. By using GWAS approach, we examined the association between 1,140,419 SNPs and relative maximal oxygen consumption rate (VO 2 max) in 80 international-level Russian endurance athletes (46 males and 34 females). To validate obtained results, we further performed case-control studies by comparing the frequencies of the most significant SNPs (with P <10 -5 -10 -8 ) between 218 endurance athletes and opposite cohorts (192 Russian controls, 1367 European controls, and 230 Russian power athletes). Initially, six ‘endurance alleles’ were identified showing discrete associations with VO 2 max both in males and females. Next, case-control studies resulted in remaining three SNPs ( NFIA-AS2 rs1572312, TSHR rs7144481, RBFOX1 rs7191721) associated with endurance athlete status. The C allele of the most significant SNP, rs1572312, was associated with high values of VO 2 max (males: P =0.0051; females: P =0.0005). Furthermore, the frequency of the rs1572312 C allele was significantly higher in elite endurance athletes (95.5%) in comparison with non-elite endurance athletes (89.8%, P =0.0257), Russian (88.8%, P =0.007) and European (90.6%, P =0.0197) controls and power athletes (86.2%, P =0.0005). The rs1572312 SNP is located on the nuclear factor I A antisense RNA 2 ( NFIA-AS2 ) gene which is supposed to regulate the expression of the NFIA gene (encodes transcription factor involved in activation of erythropoiesis and repression of the granulopoiesis). Our data show that the NFIA-AS2 rs1572312, TSHR rs7144481 and RBFOX1 rs7191721 polymorphisms are associated with aerobic performance and elite endurance athlete status

    Surface patterning of nanoparticles with polymer patches

    No full text
    Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest(1–3). Surface-patterned particles act as colloidal analogues of atoms and molecules(4,5), serve as model systems in studies of phase transitions in liquid systems(6), behave as ‘colloidal surfactants’(7) and function as templates for the synthesis of hybrid particles(8). The generation of micrometre- and submicrometre-sized patchy colloids is now efficient(9–11), but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties(12). At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles(13–15), and nanoparticles with surface ripples(16) or a ‘raspberry’ surface morphology(17). Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization
    corecore