49 research outputs found

    Aflatoxin B1-Associated DNA Adducts Stall S Phase and Stimulate Rad51 foci in Saccharomyces cerevisiae

    Get PDF
    AFB1 is a potent recombinagen in budding yeast. AFB1 exposure induces RAD51 expression and triggers Rad53 activation in yeast cells that express human CYP1A2. It was unknown, however, when and if Rad51 foci appear. Herein, we show that Rad53 activation correlates with cell-cycle delay in yeast and the subsequent formation of Rad51 foci. In contrast to cells exposed to X-rays, in which Rad51 foci appear exclusively in G2 cells, Rad51 foci in AFB1-exposed cells can appear as soon as cells enter S phase. Although rad51 and rad4 mutants are mildly sensitive to AFB1, chronic exposure of the NER deficient rad4 cells to AFB1 leads to increased lag times, while rad4 rad51 double mutants exhibit synergistic sensitivity and do not grow when exposed to 50 μM AFB1. We suggest RAD51 functions to facilitate DNA replication after replication fork stalling or collapse in AFB1-exposed cells

    Exposure to aflatoxin and fumonisin in children at risk for growth impairment in rural Tanzania

    Get PDF
    Growth impairment is a major public health issue for children in Tanzania. The question remains as to whether dietary mycotoxins play a role in compromising children's growth. We examined children's exposures to dietary aflatoxin and fumonisin and potential impacts on growth in 114 children under 36 months of age in Haydom, Tanzania. Plasma samples collected from the children at 24 months of age (N = 60) were analyzed for aflatoxin B₁-lysine (AFB₁-lys) adducts, and urine samples collected between 24 and 36 months of age (N = 94) were analyzed for urinary fumonisin B₁ (UFB₁). Anthropometric, socioeconomic, and nutritional parameters were measured and growth parameter z-scores were calculated for each child. Seventy-two percent of the children had detectable levels of AFB₁-lys, with a mean level of 5.1 (95% CI: 3.5, 6.6) pg/mg albumin; and 80% had detectable levels of UFB₁, with a mean of 1.3 (95% CI: 0.8, 1.8) ng/ml. This cohort had a 75% stunting rate [height-for-age z-scores (HAZ) < −2] for children at 36 months. No associations were found between aflatoxin exposures and growth impairment as measured by stunting, underweight [weight-for-age z-scores (WAZ) < −2], or wasting [weight-for-height z-scores (WHZ) < −2]. However, fumonisin exposure was negatively associated with underweight (with non-detectable samples included, p = 0.0285; non-detectable samples excluded, p = 0.005) in this cohort of children. Relatively low aflatoxin exposure at 24 months was not linked with growth impairment, while fumonisin exposure at 24–36 months based on the UFB₁ biomarkers may contribute to the high growth impairment rate among children of Haydom, Tanzania; which may be associated with their breast feeding and weaning practices

    Quantification of urinary aflatoxin B1 dialdehyde metabolites formed by aflatoxin aldehyde reductase using isotope dilution tandem mass spectrometry

    No full text
    The aflatoxin B1 aldehyde reductases (AFARs), inducible members of the aldo-keto reductase superfamily, convert aflatoxin B1 dialdehyde derived from the exo- and endo-8,9-epoxides into a number of reduced alcohol products that might be less capable of forming covalent adducts with proteins. An isotope dilution tandem mass spectrometry method for quantification of the metabolites, C-8 monoalcohol, dialcohol, and C-6a monoalcohol, was developed to ascertain their possible role as urinary biomarkers for application to chemoprevention investigations. This method uses a novel 13C 17-aflatoxin B1 dialcohol internal standard, synthesized from 13C17-aflatoxin B1 biologically produced by Aspergillus flavus. Chromatographic standards of the alcohols were generated through sodium borohydride reduction of the aflatoxin B1 dialdehyde. This method was then explored for sensitivity and specificity in urine samples of aflatoxin B1-dosed rats that were pretreated with 3H-1,2-dithiole-3-thione to induce the expression of AKR7A1, a rat isoform of AFAR. One of the two known monoalcohols and the dialcohol metabolite were detected in all urine samples. The concentrations were 203.5 ± 39.0 ng of monoalcohol C-6a/mg of urinary creatinine and 10.0 ± 1.0 ng of dialcohol/mg of creatinine (mean ± standard error). These levels represented about 8.0 and 0.4% of the administered aflatoxin B1 dose that was found in the urine at 24 h, respectively. Thus, this highly sensitive and specific isotope dilution method is applicable to in vivo quantification of urinary alcohol products produced by AFAR. Heretofore, the metabolic fate of the 8,9-epoxides that are critical for aflatoxin toxicities has been measured by biomarkers of lysine-albumin adducts, hepatic and urinary DNA adducts, and urinary mercapturic acids. This urinary detection of the alcohol products directly contributes to the goal of mass balancing the fate of the bioreactive 8,9-epoxides of AFB1 in vivo. © 2008 American Chemical Society

    Protection against aflatoxin B1-induced cytotoxicity by expression of the cloned aflatoxin B1-aldehyde reductases rat AKR7A1 and human AKR7A3

    No full text
    The reduction of the aflatoxin B1 (AFB1) dialdehyde metabolite to its corresponding mono and dialcohols, catalyzed by aflatoxin B1-aldehyde reductase (AFAR, rat AKR7A1, and human AKR7A3), is greatly increased in livers of rats treated with numerous chemoprotective agents. Recombinant human AKR7A3 has been shown to reduce the AFB 1-dialdehyde at rates greater than those of the rat AKR7A1. The activity of AKR7A1 or AKR7A3 may detoxify the AFB1-dialdehyde, which reacts with proteins, and thereby inhibits AFB1-induced toxicity; however, direct experimental evidence of this hypothesis was lacking. Two human B lymphoblastoid cell lines, designated pMF6/1A2/AKR7A1 and pMF6/1A2, were genetically engineered to stably express AKR7A1 and/or cytochrome P4501A2 (1A2). The pMF6/1A2/AKR7A1 cells were refractory to the cytotoxic effects of 3 ng/mL AFB1, in comparison to pM6/1A2 cells, which were more sensitive. Diminished protection occurred at higher concentrations of AFB1 in pMF6/1A2/AKR7A1 cells, suggesting that additional factors were influencing cell survival. COS-7 cells were transfected with either vector control, rat AKR7A1, or human AKR7A3, and the cells were treated with AFB1-dialdehyde. There was a 6-fold increase in the dialdehyde LC50, from 66 μM in vector-transfected cells to 400 μM in AKR7A1-transfected cells, and an 8.5-fold increase from 35 μM in vector-transfected cells to 300 μM in AKR7A3-transfected cells. In both cases, this protective effect of the AFAR enzyme was accompanied by a marked decrease in protein adducts. Fractionation of the cellular protein showed that the mitochondria/nuclei and microsomal fractions contained the highest concentration of protein adducts. The levels of human AKR7A3 and AKR7A2 were measured in 12 human liver samples. The expression of AKR7A3 was detectable in all livers and lower than those of AKR7A2 in 11 of the 12 samples. Overall, these results provide the first direct evidence of a role for rat AKR7A1 and human AKR7A3 in protection against AFB 1-induced cytotoxicity and protein adduct formation. © 2008 American Chemical Society

    Intermittent Dosing with Oltipraz: Relationship between Chemoprevention of Aflatoxin-induced Tumorigenesis and Induction of Glutathione S-Transferases

    No full text
    Oltipraz [5-(2-pyrazinyl)methyl-1,2-dithiole-3-thione] protects against chemical carcinogenesis in several animal models and is currently under evaluation as a possible chemopreventive agent in humans. Ideally, clinical chemopreventive interventions use dosing regimens that maximize efficacy while minimizing toxicity. Toward this end, the chemopreventive efficacy achieved by administration of intermittent doses of oltipraz was evaluated in rats. F344 rats were treated with oltipraz (0.5 mmol/kg, p.o.) once weekly, twice weekly, or daily over a 5-week period. After the first week, all rats were gavaged with 20 ug/kg of aflatoxin B, for 28 consecutive days. Livers were analyzed 2 months after the last aflatoxin B, dose, and the volume of liver occupied by glutathione S-transferase (GS1\u3eP positive foci, a presumptive marker of neoplasia, was observed to be decreased \u3e95%, \u3e97%, or \u3e99% in livers of rats receiving once-, twice-weekly or daily oltipraz treatments, respectively. The chemopreventive actions of oltipraz have been associated with increases in the levels of phase 2 detoxifying enzymes, such as the glutathione 5-transferase isozymes. Accordingly, GST conjugation activity measured with l-chloro-2,4-dinitrobenzene as substrate increased 1.5-, 1.8-, or 2.4-fold for the once-weekly, twice-weekly or daily treatments, respectively, throughout a 7-day period. Quantitative HPLC analyses of GST subunits 24 h after 2 or 7 daily adniinistradons of oltipraz showed that the levels of subunits Yb., Yp, Ycj, and Ya2 were increased with maximum elevations of 5.6-, 11.1-, 6V4-, and 104-fold, respectively. In comparison, levels of subunits Yt\u3e2 and Yc, were modestly elevated 1.8- to 2.6-fold, respectively, whereas subunit Ya, was not induced. Remarkably, the levels of summit Yp and Ya2 remained elevated ≈2.3-fold 7 days after a single dose of oltipraz. In contrast, the levels of subunits Yb, and Ycj diminished to approximate control levels within 7 days after a single dose of oltipraz. GST mRNA levels for Ya, Yb, and Yp were measured by Northern blot analysis and were found to be elevated maximally to 13.7-, 135-, and 3.9-fold, respectively, after two daily oltipraz doses. Interestingly, GST Ya and Yb mRN A diminished to constitutive levels after 7 daily doses of oltipraz, with no corresponding decreases in GST subunit or activity levels. The levels of GST Ya and Yb mRNA decreased to constitutive levels within 4 days after a single oltipraz administration, whereas GST Yp mRNA levels remained elevated throughout the 7-day follow-up period. These results suggest that the protracted pharmacodynamic actions of oltipraz on enzyme induction may account for the marked reduction in the hepatic burden of aflatoxin B,-induced putative preneoplastic tumors after intermittent dosing. Consequently, scheduling of intermittent dosing protocols may sustain efficacy while improving drug tolerance and patient compliance over long-term treatments. These properties of oltipraz increase its attractiveness for clinical chemopreventive interventions. © 1995, American Association for Cancer Research. All rights reserved

    Transgenic expression of aflatoxin aldehyde reductase (AKR7A1) modulates aflatoxin B1 metabolism but not hepatic carcinogenesis in the rat

    No full text
    In both experimental animals and humans, aflatoxin B1 (AFB1) is a potent hepatic toxin and carcinogen against which a variety of antioxidants and experimental or therapeutic drugs (e.g., oltipraz, related dithiolethiones, and various triterpenoids) protect from both acute toxicity and carcinogenesis. These agents induce several hepatic glutathione S-transferases (GST) as well as aldo-keto reductases (AKR) which are thought to contribute to protection. Studies were undertaken in transgenic rats to examine the role of one inducible enzyme, AKR7A1, for protection against acute and chronic actions of AFB1 by enhancing detoxication of a reactive metabolite, AFB1dialdehyde, by reduction to alcohols. The AFB1 dialdehyde forms adducts with protein amino groups by a Schiff base mechanism and these adducts have been theorized to be at least one cause of the acute toxicity of AFB1 and to enhance carcinogenesis. A liver-specific AKR7A1 transgenic rat was constructed in the Sprague-Dawley strain and two lines, AKR7A1Tg2 and AKR7A1Tg5, were found to overexpress AKR7A1 by 18- and 8-fold, respectively. Rates of formation of AFB1 alcohols, both in hepatic cytosols and as urinary excretion products, increased in the transgenic lines with AKR7A1Tg2 being the highest. Neither line offered protection against acute AFB1-induced bile duct proliferation, a functional assessment of acute hepatotoxicity by AFB1, nor did they protect against the formation of GST-P positive putative preneoplastic foci as a result of chronic exposure to AFB1. These results imply that the prevention of protein adducts mediated by AKR are not critical to protection against AFB1 tumorigenicity. © The Author 2009. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved

    Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1, 9(11)-dien-28-oyl]imidazole

    No full text
    Synthetic triterpenoid analogues of oleanolic acid are potent inducers of the phase 2 response as well as inhibitors of inflammation. We show that the triterpenoid, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), is a highly potent chemopreventive agent that inhibits aflatoxin-induced tumorigenesis in rat liver. The chemopreventive potency of CDDO-Im was evaluated by measuring inhibition of formation of putative preneoplastic lesions (glutathione S-transferase P positive foci) in the liver of rats exposed to aflatoxin B1. CDDO-Im produces an 85% reduction in the hepatic focal burden of preneoplastic lesions at 1 μmol/ kg body weight and a \u3e99% reduction at 100 μmol/kg body weight. CDDO-Im treatment reduces levels of aflatoxin-DNA adducts by ∼40% to 90% over the range of 1 to 100 μmol/kg body weight. Additionally, changes in mRNA levels of genes involved in aflatoxin metabolism were measured in rat liver following a single dose of CDDO-Im. GSTA2, GSTA5, AFAR, and EPHX1 transcripts are elevated 6 hours following a 1 μmol/kg body weight dose of CDDO-Im. Microarray analysis using wild-type and Nrf2 knockout mice confirms that many phase 2 and antioxidant genes are induced in an Nrf2-dependent manner in mouse liver following treatment with CDDO-Im. Thus, low-micromole doses of CDDO-Im induce cytoprotective genes, inhibit DNA adduct formation, and dramatically block hepatic tumorigenesis. As a point of reference, oltipraz, an established modulator of aflatoxin metabolism in humans, is 100-fold weaker than CDDO-Im in this rat antitumorigenesis model. The unparalleled potency of CDDO-Im in vivo highlights the chemopreventive promise of targeting Nrf2 pathways with triterpenoids. ©2006 American Association for Cancer Research

    Complete protection against aflatoxin B1-induced liver cancer with a triterpenoid: DNA adduct dosimetry, molecular signature, and genotoxicity threshold

    No full text
    In experimental animals and humans, aflatoxin B1 (AFB 1) is a potent hepatic toxin and carcinogen. The synthetic oleanane triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), a powerful activator of Keap1-Nrf2 signaling, protects against AFB1-induced toxicity and preneoplastic lesion formation (GST-P-positive foci). This study assessed and mechanistically characterized the chemoprotective efficacy of CDDO-Imagainst AFB1-induced hepatocellular carcinoma (HCC). A lifetime cancer bioassay was undertaken in F344 rats dosed with AFB1 (200 μg/kg rat/day) for four weeks and receiving either vehicle or CDDO-Im(three times weekly), oneweek before and throughout the exposure period. Weekly, 24-hour urine samples were collected for analysis of AFB1 metabolites. In a subset of rats, livers were analyzed for GST-P foci. The comparative response of a toxicogenomic RNA expression signature for AFB1 was examined. CDDO-Im completely protected (0/20) against AFB1-induced liver cancer compared with a 96% incidence (22/23) observed in the AFB1 group. With CDDO-Im treatment, integrated level of urinary AFB1-N7-guanine was significantly reduced (66%) and aflatoxin-N-acetylcysteine, a detoxication product, was consistently elevated (300%) after the first AFB1 dose. In AFB1-treated rats, the hepatic burden of GST-P-positive foci increased substantially (0%-13.8%) over the four weeks, but was largely absent with CDDO-Im intervention. The toxicogenomic RNA expression signature characteristic of AFB1 was absent in the AFB1 + CDDO-Im-treated rats. The remarkable efficacy of CDDO-Imas an anticarcinogen is established even in the face of a significant aflatoxin adduct burden. Consequently, the absence of cancer requires a concept of a threshold for DNA damage for cancer development. ©2014 AACR
    corecore