47 research outputs found

    Total Column Ozone Retrieval from Novel Array Spectroradiometer

    Get PDF
    This study presents total column ozone (TCO) retrieval from a new system, called Koherent, developed at PMOD/WRC. The instrument is based on a small, cost effective, robust, low-maintenance and state-of-the-art technology array&nbsp; spectroradiometer. It consists of a BTS-2048-UV-S-F array spectroradiometer from Gigahertz-Optik GmbH, coupled with an optical fiber to a lens-based telescope mounted on a sun tracker for measuring direct UV irradiance in the ultraviolet wavelength band between 305 nm to 345 nm. Two different algorithms are developed for retrieving TCO from these spectral measurements: 1) TCO retrieved by a minimal least squares fit algorithm (LSF) and 2) a Custom Double Ratio (CDR) technique using four specifically selected wavelengths from the spectral measurements. The double ratio technique is analogous to the retrieval algorithm applied for the Dobson and the Brewer but adopted and optimized here for TCO retrieval with Koherent. The instrument was calibrated in two different ways: a) absolute calibration of the spectra using the portable reference for ultraviolet radiation QASUME for the LSF retrieval and b) relative calibration of the extraterrestrial constant (ETC) of the CDR retrieval, by minimizing the slope between air mass and the relative differences of TCO from QASUME and Koherent. This adjustment of the ETC allows the instrument to be calibrated with standard TCO reference instruments during calibration campaigns, such as a double monochromator Brewer. A two-year comparison in Davos, Switzerland, between Koherent and the Brewer 156 (double monochromator) shows that TCO derived from Koherent and the Brewer 156 agree in average over the entire period within less than 0.7 % for all retrievals in terms of offset. The performance in terms of slant path depends on the selected retrieval and the applied corrections. The stray light corrected LSF retrieval exhibits a smaller slant path dependency than the CDR retrieval and performs almost as for a double monochromator system. The slant path dependency of the CDR is comparable to the slant path dependency of a single Brewer monochromator. The combination of both retrievals leads to performance with an offset close to zero compared to Brewer 156, a seasonal amplitude of the relative difference of 0.08 % and a slant path dependency of maximum 1.64 %, which is similar as other standard TCO instruments such as single Brewer or Dobson. Applying the double ratio technique by selecting the wavelengths and slit functions from Brewer and Dobson, respectively, allow to determine the effective ozone temperature within 3 K on daily averages. With the improved TCO retrieval, Koherent serves as a new low maintenance instrument to operationally monitor TCO at remote sites. The presented TCO retrieval may be applied to other array based spectroradiometers providing direct spectral measurements in the ultraviolet.</p

    Spectral UV measurements within the EUropean BREWer NETwork: COST Action ES1207 (2013-2017)

    Get PDF
    PresentaciĂłn realizada en: European Conference on Solar UV Monitoring-ECUVM, celebrada en Viena del 12 al 14 de septiembre de 2018

    The site-specific primary calibration conditions for the Brewer spectrophotometer

    Get PDF
    The Brewer ozone spectrophotometer (the Brewer) is one of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW)’s standard ozone-monitoring instruments since the 1980s. The entire global Brewer ozone-monitoring network is operated and maintained via a hierarchical calibration chain, which started from world reference instruments that are independently calibrated via the primary calibration method (PCM) at a premium site (National Oceanic and Atmospheric Administration’s (NOAA) Mauna Loa Observatory, Hawaii). These world reference instruments have been maintained by Environment and Climate Change Canada (ECCC) in Toronto for the last 4 decades. Their calibration is transferred to the travelling standard instrument and then to network (field) Brewer instruments at their monitoring sites (all via the calibration transfer method; CTM)

    Validation of TROPOMI Surface UV Radiation Product

    Get PDF
    The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. The S5P is a sun-synchronous polar-orbiting satellite providing global daily coverage. The TROPOMI swath is 2600 km wide, and the ground resolution for most data products is 7.2x3.5 km2 (5.6x3.5 km2 since 6 August 2019) at nadir. The Finnish Meteorological Institute (FMI) is responsible for the development and processing of the TROPOMI Surface Ultraviolet (UV) Radiation Product which includes 36 UV parameters in total. Ground-based data from 25 sites located in arctic, subarctic, temperate, equatorial and antarctic areas were used for validation of TROPOMI overpass irradiance at 305, 310, 324 and 380 nm, overpass erythemally weighted dose rate / UV index and erythemally weighted daily dose for the period from 1 January 2018 to 31 August 2019. The validation results showed that for most sites 60–80% of TROPOMI data was within ±20% from ground-based data for snow free surface conditions. The median relative differences to ground-based measurements of TROPOMI snow free surface daily doses were within ±10% and ±5% at two thirds and at half of the sites, respectively. At several sites more than 90% of clear sky TROPOMI data were within ±20% from ground-based measurements. Generally median relative differences between TROPOMI data and ground-based measurements were a little biased towards negative values, but at high latitudes where nonhomogeneous topography and albedo/snow conditions occurred, the negative bias was exceptionally high, from -30% to -65%. Positive biases of 10–15% were also found for mountainous sites due to challenging topography. The TROPOMI Surface UV Radiation Product includes quality flags to detect increased uncertainties in the data due to heterogeneous surface albedo and rough terrain which can be used to filter the data retrieved under challenging conditions
    corecore