29 research outputs found

    Using soil and canopy temperature to support efficient management of irrigated vineyards

    Get PDF
    Extreme heat and drought events are becoming more frequent and erratic in Mediterranean Europe. Better comprehension of spatial and temporal dynamics of heat fluxes and thermal microclimate in vineyards can support vineyard’s management and minimize the impact of climate variability. Field experiments were carried out in South Portugal with two red cvs. Touriga Nacional and Aragonez (syn. Tempranillo) under deficit irrigation. Canopy temperature (Tc) is a robust predictor of plant water status, especially when measured under more stressful conditions. In parallel, soil temperature (TS) had a positive influence on TC especially at the cluster zoneinfo:eu-repo/semantics/publishedVersio

    Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

    Get PDF
    Context and purpose of the study - Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology. Leaf/canopy temperature is a biophysical variable with both physiological and agronomic meaning. Improved comprehension of spatial and temporal dynamics of soil and leaf/canopy temperature (thermal microclimate) in irrigated vineyards can support improved crop and soil monitoring and management under more extreme and erratic climate conditions. In this work we propose a conceptual approach to integrate information on major soil-vine-atmosphere interactions under deficit irrigation. Ultimately a conceptual model based on temperature relations is proposed to support assessment of the impact of air and soil temperatures on canopy and berry temperatures, leaf senescence and gas exchange. This model may support Decision Support Systems (DSS) for canopy and soil management and irrigation scheduling in Mediterranean vineyards. In addition a set of temperatures (e.g. canopy, soil) are proposed to feed the conceptual models to support the DSSinfo:eu-repo/semantics/publishedVersio

    Can soil water content be used as a predictor of predawn leaf water potential for deficit irrigation scheduling? A case study at Alentejo wine region

    Get PDF
    Context and purpose of the study: Water and heat stress impose new challenges to irrigation management in the Mediterranean areas. This reality has a major impact on the vineyard ecosystem, particularly on the scarce water resources of the Alentejo region (South Portugal). To mitigate this problem, irrigation management should focus on optimizing yield and fruit quality per volume of water applied. This work aims to discuss the use of predawn leaf water potential and soil water status relationships as a decision tool for irrigation management taking as basis data from a field trial where two deficit irrigation strategies were comparedinfo:eu-repo/semantics/publishedVersio

    Canopy and soil thermal patterns to support management of irrigated vineyards

    Get PDF
    Irrigated viticulture expanded fast in Southern European countries such as Portugal to optimize berry yield and quality and to increase vine’s longevity. However, intensive irrigation increases pressure over the local and regional water resources, that are getting scarcer, and increases also management costs. Additionally, row crops such as grapevine, are more vulnerable to heat stress due to the additional effects of soil heat fluxes which can negatively influence canopy and berry thermal condition. Therefore, a better understanding of grapevine responses (diurnal and seasonal) to environmental factors (air temperature, soil water) and agronomic practices (deficit irrigation, soil management) are on demand by the industry. Ground based thermography was used to monitor the vertical profile of canopy temperature as well as soil temperature patterns along the day and season as means to assess plant water status and predict risks of heat stress damage. As part of the EU-INNOVINE project, field trials were carried in 2013, 2014 and 2015 in Alentejo (South Portugal). We examined the diurnal and seasonal response of two V. vinifera varieties Aragonez (syn. Tempranillo) and Touriga Nacional subjected to sustained deficit irrigation (SDI), and regulated deficit irrigation (RDI, about 50% of the SDI). Diurnal canopy (TC), and soil surface (Tsoil) temperatures were assessed by thermography. Punctual measurements of leaf temperature with thermal couples, leaf water potential and leaf gas exchange were also done. TC values were above the optimal temperature for leaf photosynthesis during part of the day light period (11:00-14:00h to 17:00h), especially under stressful atmospheric conditions (high VPD, high Tair) and under regulated deficit irrigation. Tsoil was on average about 10-15°C higher than TC. We found strong correlation between TC (derived from thermography) and major physiological traits (leaf water potential and leaf gas exchange). Our results suggest that Tc can be explored as a simple but robust non-intrusive thermal indicator of grapevine performance and also as a parameter to feed grapevine growth models and to estimate heat and water fluxes in irrigated vineyardsinfo:eu-repo/semantics/publishedVersio

    Is early defoliation a sustainable management practice for mediterranean vineyards? case studies at the portuguese Lisbon winegrowing region

    Get PDF
    Context and purpose of the study - Recently early defoliation (ED) has been tested in several highyielding grapevine varieties and sites aiming at reducing cluster compactness and hence, regulating yield and susceptibility to botrytis bunch rot infection. The reported results have been generally positive, encouraging growers to use this canopy management technique as an alternative for replacing the conventional time-consuming cluster thinning and, simultaneously, as a sustainable practice to reduce the use of fungicides. However, ED increases berry sunburn risks and/or can induce carry-over effects on vigor and node fruitfulness as shown in the two case studies reported in this work. Material and methods- Two ED experiments were set up at a commercial vineyard located in the Lisbon winegrowing region with the varieties Aragonez, syn. Tempranillo (2013-2015) and Semillon (2018). In both experiments the ED treatment was compared with the non-defoliated (ND; control) using a randomized complete block design with 4 replicates per treatment. The ED treatment consisted of the removal of 5-6 basal leaves and any laterals at pre-flowering. Vegetative (leaf area and pruning weight) and reproductive components (%fruit-set, cluster number, cluster weight, yield) and berry composition were assessedinfo:eu-repo/semantics/publishedVersio

    Chemical and Sensorial Characterization of Tropical Syrah Wines Produced at Different Altitudes in Northeast of Brazil

    Get PDF
    Over the years, viticulture has expanded to new regions outside the temperate zones, such as Northeast Brazil, India, Thailand, Myanmar, Vietnam, Bangladesh and Venezuela, characterized by the production of tropical wines. It is important for the productive sector to comprehend the effects of grapevine interaction with the characteristics of each new region on wines composition. In this study, the composition of wines of Syrah from two regions with different altitudes in Northeast Brazil were analyzed by different methodologies to characterize chemical compounds as sugar, acids, minerals, phenolics (anthocyanins, flavonols, stilbenes and condensed tannins) and the sensory profile. The wines of the Bahia region (1100 m of altitude) obtained high concentrations for chemical parameters related to color, monomeric anthocyanins, stilbenes and monomeric and oligomeric tannins. Wines of the low altitude region, Pernambuco (350 m of altitude) were characterized by higher concentrations of flavonols (kaempferol, isorhamnetin, quercetin and rutin) and polymerized tannins. The chemical composition of wines from the two studied regions was influenced by altitude. A trend towards higher concentrations in most for phenolic compounds analyzed was observed in wines from the higher altitude region during the two years of study. Regarding the sensory profile, fruity, floral, herbaceous and empyreumatic attributes aromatic obtained highest scores in wines of the 350 m altitude region, the other attributes were dependent on the year of harvest

    Water as a critical issue for viticulture in southern Europe: sustainability vs competiveness

    Get PDF
    Sourced from the research article “Modern viticulture in southern Europe: vulnerabilities and strategies for adaptation to water scarcity” (Agricultural Water Management, 2016)Water is a vulnerable resource in the Mediterranean region, but irrigation demands have been increasing to mitigate effects of environmental stress. Sustainable wine production involves the precise use of water in the vineyard and winery. Improved knowledge on grapevine ecophysiology and genetics, the use of sensors for soil and canopy monitoring, plant phenotyping and improved crop management can help save water. In the winery, best management practices and improved water metrics will promote water savings and decrease wastewater productioninfo:eu-repo/semantics/publishedVersio

    Chemical and sensorial characterization of tropical syrah wines produced at different altitudes in northeast of the Brazil.

    Get PDF
    Over the years, viticulture has expanded to new regions outside the temperate zones, such as Northeast Brazil, India, Thailand, Myanmar, Vietnam, Bangladesh and Venezuela, characterized by the production of tropical wines. It is important for the productive sector to comprehend the effects of grapevine interaction with the characteristics of each new region on wines composition. In this study, the composition of wines of Syrah from two regions with different altitudes in Northeast Brazil were analyzed by different methodologies to characterize chemical compounds as sugar, acids, minerals, phenolics (anthocyanins, flavonols, stilbenes and condensed tannins) and the sensory profile. The wines of the Bahia region (1100 m of altitude) obtained high concentrations for chemical parameters related to color, monomeric anthocyanins, stilbenes and monomeric and oligomeric tannins. Wines of the low altitude region, Pernambuco (350 m of altitude) were characterized by higher concentrations of flavonols (kaempferol, isorhamnetin, quercetin and rutin) and polymerized tannins. The chemical composition of wines from the two studied regions was influenced by altitude. A trend towards higher concentrations in most for phenolic compounds analyzed was observed in wines from the higher altitude region during the two years of study. Regarding the sensory profile, fruity, floral, herbaceous and empyreumatic attributes aromatic obtained highest scores in wines of the 350 m altitude region, the other attributes were dependent on the year of harvest

    Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity

    Get PDF
    Water is now considered the most important but vulnerable resource in the Mediterranean region. Nev ertheless, irrigation expanded fast in the region (e.g. South Portugal and Spain) to mitigate environmental stress and to guarantee stable grape yield and quality. Sustainable wine production depends on sustain able water use in the wine’s supply chain, from the vine to the bottle. Better understanding of grapevine stress physiology (e.g. water relations, temperature regulation, water use efficiency), more robust crop monitoring/phenotyping and implementation of best water management practices will help to mitigate climate effects and will enable significant water savings in the vineyard and winery. In this paper, we focused on the major vulnerabilities and opportunities of South European Mediterranean viticulture (e.g. in Portugal and Spain) and present a multi-level strategy (from plant to the consumer) to overcome region’s weaknesses and support strategies for adaptation to water scarcity, promote sustainable water use and minimize the environmental impact of the sector
    corecore