656 research outputs found
Alignment Timescale of the Microquasar GRO J1655-40
The microquasar GRO J1655-40 has a black hole with spin angular momentum
apparently misaligned to the orbital plane of its companion star. We
analytically model the system with a steady state disc warped by Lense-Thirring
precession and find the timescale for the alignment of the black hole with the
binary orbit. We make detailed stellar evolution models so as to estimate the
accretion rate and the lifetime of the system in this state. The secondary can
be evolving at the end of the main sequence or across the Hertzsprung gap. The
mass-transfer rate is typically fifty times higher in the latter case but we
find that, in both cases, the lifetime of the mass transfer state is at most a
few times the alignment timescale. The fact that the black hole has not yet
aligned with the orbital plane is therefore consistent with either model. We
conclude that the system may or may not have been counter-aligned after its
supernova kick but that it is most likely to be close to alignment rather than
counteralignment now.Comment: Accepted for publication in MNRA
Gap solitons in a model of a hollow optical fiber
We introduce a models for two coupled waves propagating in a hollow-core
fiber: a linear dispersionless core mode, and a dispersive nonlinear
quasi-surface one. The linear coupling between them may open a bandgap, through
the mechanism of the avoidance of crossing between dispersion curves. The
third-order dispersion of the quasi-surface mode is necessary for the existence
of the gap. Numerical investigation reveals that the entire bandgap is filled
with solitons, and they all are stable in direct simulations. The gap-soliton
(GS) family is extended to include pulses moving relative to the given
reference frame, up to limit values of the corresponding boost ,
beyond which the solitons do not exists. The limit values are nonsymmetric for
and . The extended gap is also entirely filled with the
GSs, all of which are stable in simulations. Recently observed solitons in
hollow-core photonic-crystal fibers may belong to this GS family.Comment: 5 pages, 5 figure
Aspherical supernova explosions and formation of compact black hole low-mass X-ray binaries
It has been suggested that black-hole low-mass X-ray binaries (BHLMXBs) with
short orbital periods may have evolved from BH binaries with an
intermediate-mass secondary, but the donor star seems to always have higher
effective temperatures than measured in BHLMXBs (Justham, Rappaport &
Podsiadlowski 2006). Here we suggest that the secondary star is originally an
intermediate-mass (\sim 2-5 M_{\sun}) star, which loses a large fraction of
its mass due to the ejecta impact during the aspherical SN explosion that
produced the BH. The resulted secondary star could be of low-mass (\la 1
M_{\sun}). Magnetic braking would shrink the binary orbit, drive mass transfer
between the donor and the BH, producing a compact BHLMXB.Comment: 4 pages, accepted for publication in MNRAS Letter
WD + MS systems as the progenitor of SNe Ia
We show the initial and final parameter space for SNe Ia in a () plane and find that the positions of some famous
recurrent novae, as well as a supersoft X-ray source (SSS), RX J0513.9-6951,
are well explained by our model. The model can also explain the space velocity
and mass of Tycho G, which is now suggested to be the companion star of Tycho's
supernova. Our study indicates that the SSS, V Sge, might be the potential
progenitor of supernovae like SN 2002ic if the delayed dynamical-instability
model due to Han & Podsiadlowski (2006) is appropriate. Following the work of
Meng, Chen & Han (2009), we found that the SD model (WD + MS) with an optically
thick wind can explain the birth rate of supernovae like SN 2006X and reproduce
the distribution of the color excess of SNe Ia. The model also predicts that at
least 75% of all SNe Ia may show a polarization signal in their spectra.Comment: 6 pages, 2 figures, accepted for publication in Astrophysics & Space
Science (Proceeding of the 4th Meeting on Hot Subdwarf Stars and Related
Objects, edited by Zhanwen Han, Simon Jeffery & Philipp Podsiadlowski
Theory of Nonlinear Dispersive Waves and Selection of the Ground State
A theory of time dependent nonlinear dispersive equations of the Schroedinger
/ Gross-Pitaevskii and Hartree type is developed. The short, intermediate and
large time behavior is found, by deriving nonlinear Master equations (NLME),
governing the evolution of the mode powers, and by a novel multi-time scale
analysis of these equations. The scattering theory is developed and coherent
resonance phenomena and associated lifetimes are derived. Applications include
BEC large time dynamics and nonlinear optical systems. The theory reveals a
nonlinear transition phenomenon, ``selection of the ground state'', and NLME
predicts the decay of excited state, with half its energy transferred to the
ground state and half to radiation modes. Our results predict the recent
experimental observations of Mandelik et. al. in nonlinear optical waveguides
Gap solitons in Bragg gratings with a harmonic superlattice
Solitons are studied in a model of a fiber Bragg grating (BG) whose local
reflectivity is subjected to periodic modulation. The superlattice opens an
infinite number of new bandgaps in the model's spectrum. Averaging and
numerical continuation methods show that each gap gives rise to gap solitons
(GSs), including asymmetric and double-humped ones, which are not present
without the superlattice.Computation of stability eigenvalues and direct
simulation reveal the existence of completely stable families of fundamental
GSs filling the new gaps - also at negative frequencies, where the ordinary GSs
are unstable. Moving stable GSs with positive and negative effective mass are
found too.Comment: 7 pages, 3 figures, submitted to EP
Evolution and Nucleosynthesis of AGB stars in Three Magellanic Cloud Clusters
We present stellar evolutionary sequences for asymptotic giant branch (AGB)
stars in the Magellanic Cloud clusters NGC 1978, NGC 1846 and NGC 419. The new
stellar models for the three clusters match the observed effective temperatures
on the giant branches, the oxygen-rich to carbon-rich transition luminosities,
and the AGB-tip luminosities. A major finding is that a large amount of
convective overshoot (up to 3 pressure scale heights) is required at the base
of the convective envelope during third dredge-up in order to get the correct
oxygen-rich to carbon-rich transition luminosity. The stellar evolution
sequences are used as input for detailed nucleosynthesis calculations. For NGC
1978 and NGC 1846 we compare our model results to the observationally derived
abundances of carbon and oxygen. We find that additional mixing processes
(extra-mixing) are required to explain the observed abundance patterns. For NGC
1846 we conclude that non-convective extra-mixing processes are required on
both the RGB and the AGB, in agreement with previous studies. For NGC 1978 it
is possible to explain the C/O and 12C/13C abundances of both the O-rich and
the C-rich AGB stars by assuming that the material in the intershell region
contains high abundances of both C and O. This may occur during a thermal pulse
when convective overshoot at the inner edge of the flash-driven convective
pocket dredges C and O from the core to the intershell. For NGC 419 we provide
our predicted model abundance values although there are currently no published
observed abundance studies for the AGB stars in this cluster.Comment: 16 figures, 3 tables, Accepted for publication in Ap
Uncertainties in models of stellar structure and evolution
Numerous physical aspects of stellar physics have been presented in Ses- sion
2 and the underlying uncertainties have been tentatively assessed. We try here
to highlight some specific points raised after the talks and during the general
discus- sion at the end of the session and eventually at the end of the
workshop. A table of model uncertainties is then drawn with the help of the
participants in order to give the state of the art in stellar modeling
uncertainties as of July 2013.Comment: Proc. of the workshop "Asteroseismology of stellar populations in the
Milky Way" (Sesto, 22-26 July 2013), Astrophysics and Space Science
Proceedings, (eds. A. Miglio, L. Girardi, P. Eggenberger, J. Montalban
Cuspons, peakons and regular gap solitons between three dispersion curves
A general wave model with the cubic nonlinearity is introduced to describe a
situation when the linear dispersion relation has three branches, which would
intersect in the absence of linear couplings between the three waves. Actually,
the system contains two waves with a strong linear coupling between them, to
which a third wave is then coupled. This model has two gaps in its linear
spectrum. Realizations of this model can be made in terms of temporal or
spatial evolution of optical fields in, respectively, a planar waveguide or a
bulk-layered medium resembling a photonic-crystal fiber. Another physical
system described by the same model is a set of three internal wave modes in a
density-stratified fluid. A nonlinear analysis is performed for solitons which
have zero velocity in the reference frame in which the group velocity of the
third wave vanishes. Disregarding the self-phase modulation (SPM) term in the
equation for the third wave, we find two coexisting families of solitons:
regular ones, which may be regarded as a smooth deformation of the usual gap
solitons in a two-wave system, and cuspons with a singularity in the first
derivative at their center. Even in the limit when the linear coupling of the
third wave to the first two vanishes, the soliton family remains drastically
different from that in the linearly uncoupled system; in this limit, regular
solitons whose amplitude exceeds a certain critical value are replaced by
peakons. While the regular solitons, cuspons, and peakons are found in an exact
analytical form, their stability is tested numerically, which shows that they
all may be stable. If the SPM terms are retained, we find that there again
coexist two different families of generic stable soliton solutions, namely,
regular ones and peakons.Comment: a latex file with the text and 10 pdf files with figures. Physical
Review E, in pres
Brown Dwarfs and the Cataclysmic Variable Period Minimum
Using improved, up-to-date stellar input physics tested against observations
of low-mass stars and brown dwarfs we calculate the secular evolution of
low-mass donor cataclysmic variables (CVs), including those which form with a
brown dwarf donor. Our models confirm the mismatch between the calculated
minimum period (Pmin ~ 70 min) and the observed short-period cut-off (~ 80 min)
in the CV period histogram. We find that tidal and rotational corrections
applied to the one-dimensional stellar structure equations have no significant
effect on the period minimum. Theoretical period distributions synthesized from
our model sequences always show an accumulation of systems at the minimum
period, a feature absent from the observed distribution. We suggest that
non-magnetic CVs become unobservable as they are effectively trapped in
permanent quiescence before they reach Pmin, and that small-number statistics
may hide the period spike for magnetic CVs.Comment: 10 pages; accepted for publication in MNRA
- …
