149 research outputs found

    Analytic orbit propagation for transiting circumbinary planets

    Full text link
    The herein presented analytical framework fully describes the motion of coplanar systems consisting of a stellar binary and a planet orbiting both stars on orbital as well as secular timescales. Perturbations of the Runge-Lenz vector are used to derive short period evolution of the system, while octupole secular theory is applied to describe its long term behaviour. A post Newtonian correction on the stellar orbit is included. The planetary orbit is initially circular and the theory developed here assumes that the planetary eccentricity remains relatively small (e_2<0.2). Our model is tested against results from numerical integrations of the full equations of motion and is then applied to investigate the dynamical history of some of the circumbinary planetary systems discovered by NASA's Kepler satellite. Our results suggest that the formation history of the systems Kepler-34 and Kepler-413 has most likely been different from the one of Kepler-16, Kepler-35, Kepler-38 and Kepler-64, since the observed planetary eccentricities for those systems are not compatible with the assumption of initially circular orbits.Comment: Accepted for publication in Ap

    Sublimation-induced orbital perturbations of extrasolar active asteroids and comets: application to white dwarf systems

    Full text link
    The metal budgets in some white dwarf (WD) atmospheres reveal that volatile-rich circumstellar bodies must both exist in extrasolar systems and survive the giant branch phases of stellar evolution. The resulting behaviour of these active asteroids or comets which orbit WDs is not well-understood, but may be be strongly influenced by sublimation due to stellar radiation. Here we develop a model, generally applicable to any extrasolar system with a main sequence or WD star, that traces sublimation-induced orbital element changes in approximately km-sized extrasolar minor planets and comets traveling within hundreds of au. We derive evolution equations on orbital timescales and for arbitrarily steep power-law sublimation dependencies on distance, and place our model in a Solar system context. We also demonstrate the importance of coupling sublimation and general relativity, and the orbital consequences of outgassing in arbitrary directions. We prove that nongravitational accelerations alone cannot result in orbit crossing with the WD disruption radius, but may shrink or expand the orbit by up to several au after a single pericentre passage, potentially affecting subsequent interactions with remnant debris and planets. Our analysis suggests that extant planets must exist in polluted WD systems.Comment: Accepted for publication in MNRA

    Detectability of Earth-like Planets in Circumstellar Habitable Zones of Binary Star Systems with Sun-like Components

    Full text link
    Given the considerable percentage of stars that are members of binaries or stellar multiples in the Solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the alpha Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones, especially in close S-Type binary systems, can be rather inaccurate. Recent progress in this field, however, allows to identify regions around the star permitting permanent habitability. While the discovery of alpha Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogues in habitable zones. We provide analytical expressions for the maximum and RMS values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent habitable zones around both stars of the alpha Centauri system.Comment: accepted for publication in The Astrophysical Journa

    The orbital evolution of asteroids, pebbles and planets from giant branch stellar radiation and winds

    Full text link
    The discovery of over 50 planets around evolved stars and more than 35 debris discs orbiting white dwarfs highlight the increasing need to understand small body evolution around both early and asymptotic giant branch (GB) stars. Pebbles and asteroids are susceptible to strong accelerations from the intense luminosity and winds of GB stars. Here, we establish equations that can model time-varying GB stellar radiation, wind drag and mass loss. We derive the complete three-dimensional equations of motion in orbital elements due to (1) the Epstein and Stokes regimes of stellar wind drag, (2) Poynting-Robertson drag, and (3) the Yarkovsky drift with seasonal and diurnal components. We prove through averaging that the potential secular eccentricity and inclination excitation due to Yarkovsky drift can exceed that from Poynting-Robertson drag and radiation pressure by at least three orders of magnitude, possibly flinging asteroids which survive YORP spin-up into a widely dispersed cloud around the resulting white dwarf. The GB Yarkovsky effect alone may change an asteroid's orbital eccentricity by ten per cent in just one Myr. Damping perturbations from stellar wind drag can be just as extreme, but are strongly dependent on the highly uncertain local gas density and mean free path length. We conclude that GB radiative and wind effects must be considered when modelling the post-main-sequence evolution of bodies smaller than about 1000 km.Comment: Corrected Fig. 3 and Eq. 14 (In Press, MNRAS

    Climate variations on Earth-like circumbinary planets

    Get PDF
    The discovery of planets orbiting double stars at close distances has sparked increasing scientific interest in determining whether Earth-analogues can remain habitable in such environments and how their atmospheric dynamics is influenced by the rapidly changing insolation. In this work we present results of the first three-dimensional numerical experiments of a water-rich planet orbiting a double star. We find that the periodic forcing of the atmosphere has a noticeable impact on the planet’s climate. Signatures of the forcing frequencies related to the planet’s as well as to the binary’s orbital periods are present in a variety of climate indicators such as temperature and precipitation, making the interpretation of potential observables challenging. However, for Earth-like greenhouse gas concentrations, the variable forcing does not change the range of insolation values allowing for habitable climates substantially

    Spectral properties of near-Earth and Mars-crossing asteroids using Sloan photometry

    Full text link
    The nature and origin of the asteroids orbiting in near-Earth space, including those on a potentially hazardous trajectory, is of both scientific interest and practical importance. We aim here at determining the taxonomy of a large sample of near-Earth (NEA) and Mars-crosser (MC) asteroids and analyze the distribution of these classes with orbit. We use this distribution to identify their source regions and to study the strength of planetary encounters to refresh asteroid surfaces. We measure the photometry of these asteroids over four filters at visible wavelengths on images taken by the SDSS. These colors are used to classify the asteroids into a taxonomy consistent with the widely used Bus-DeMeo taxonomy based on spectroscopy. We report here on the taxonomic classification of 206 NEAs and 776 MCs determined from SDSS photometry, representing an increase of 40% and 663% of known taxonomy classifications in these populations. Using the source region mapper by Greenstreet et al. (2012), we compare the taxonomic distribution among NEAs and main-belt asteroids of similar diameters. Both distributions agree at the few percent level for the inner part of the Main Belt and we confirm this region as a main source of near-Earth objects. The effect of planetary encounters on asteroid surfaces are also studied by developing a simple model of forces acting on a surface grain during planetary encounter, which provides the minimum distance at which a close approach should occur to trigger resurfacing events. By integrating numerically the orbit of the 519 S-type and 46 Q-type asteroids back in time and monitoring their encounter distance with planets, we seek to understand the conditions for resurfacing events. The population of Q-type is found to present statistically more encounters with Venus and the Earth than S-types, although both types present the same amount of encounters with Mars.Comment: Accepted for publication in Icarus. 45 pages, 11 figures, 4 tables, 2 tables in appendix (supplementary material

    An Analytic Method to determine Habitable Zones for S-Type Planetary Orbits in Binary Star Systems

    Full text link
    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical Habitable Zone arise. Do the radiative and gravitational perturbations of the second star influence the extent of the Habitable Zone significantly, or is it sufficient to consider the host-star only? In this article we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time independent analytical estimates and compare these to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of Habitable Zones towards the secondary in close binary systems.Comment: submitted to ApJ, status: accepte
    corecore