78 research outputs found

    Identification and characterization of a bacteriophage of Borrelia burgdorferi

    Get PDF

    Characterization of Borrelia Burgdorferi BlyA and BlyB Proteins: a Prophage-Encoded Holin-Like System

    Get PDF
    The conserved cp32 plasmid family of Borrelia burgdorferi was recently shown to be packaged into a bacteriophage particle (C. H. Eggers and D. S. Samuels, J. Bacteriol. 181:7308-7313, 1999), This plasmid encodes BlyA, a 7.4-kDa membrane-interactive protein, and BlyB, an accessory protein, which were previously proposed to comprise a hemolysis system. Our genetic and biochemical evidence suggests that this hypothesis is incorrect and that BlyA and BlyB function instead as a prophage-encoded holin or holin-like system for this newly described bacteriophage, An Escherichia coli mutant containing the blyAB locus that was defective for the normally cryptic host hemolysin SheA was found to be nonhemolytic, suggesting that induction of sheA by blyAB expression was responsible for the hemolytic activity observed previously, Analysis of the structural features of BlyA indicated greater structural similarity to bacteriophage-encoded holins than to hemolysins, Consistent with holin characteristics, subcellular localization studies with E. coli and B. burgdorferi indicated that BlyA is solely membrane associated and that BlyB is a soluble protein. Furthermore, BlyA exhibited a holin-like function by promoting the endolysin-dependent lysis of an induced lambda lysogen that was defective in the holin gene. Finally, induction of the cp32 prophage in B. burgdorferi dramatically stimulated blyAB expression. Our results provide the first evidence of a prophage-encoded holin within Borrelia

    The Beads-on-String Structure of Viscoelastic Threads

    Get PDF
    Submitted to J. Fluid Mech.By adding minute concentrations of a high molecular weight polymer, liquid jets or bridges collapsing under the action of surface tension develop a characteristic shape of uniform threads connecting spherical uid drops. In this paper, high-precision measurements of this beads-on-string structure are combined with a theoretical analysis of the limiting case of large polymer relaxation times and high polymer extensibilities, for which the evolution can be divided into two distinct regimes. For times smaller than the polymer relaxation time, over which the beads-on-string structure develops, we give a simplfied local description, which still retains the essential physics of the problem. At times much larger than the relaxation time, we show that the solution consists of exponentially thinning threads connecting almost spherical drops. Both experiment and theoretical analysis of a one-dimensional model equation reveal a self-similar structure of the corner where a thread is attached to the neighbouring drops.NASA Microgravity Fluid Dynamic

    Transduction by Phi Bb-1, a Bacteriophage of Borrelia Burgdorferi

    Get PDF
    We previously described a bacteriophage of the Lyme disease agent Borrelia burgdorferi designated phi BB-1. This phage packages the host complement of the 32-kb circular plasmids (cp32s), a group of homologous molecules found throughout the genus Borrelia. To demonstrate the ability of phi BB-1 to package and transduce DNA, a kanamycin resistance cassette was inserted into a cloned fragment of phage DNA, and the resulting construct was transformed into B. burgdorferi CA-11.2A cells. The kan cassette recombined into a resident cp32 and was stably maintained. The cp32 containing the kan cassette was packaged by phi BB-1 released from this B. burgdorferi strain. phi BB-1 has been used to transduce this antibiotic resistance marker into naive CA-11.2A cells, as well as two other strains of B. burgdorferi. This is the first direct evidence of a mechanism for lateral gene transfer in B. burgdorferi

    CD14 Modulates PI3K/AKT/p38-MAPK Licensing of Negative Regulators of TLR Signaling to Restrain Chronic Inflammation

    Get PDF
    Current thinking emphasizes the primacy of CD14 in facilitating TLR recognition of microbes to initiate proinflammatory signaling events and the importance of p38-MAPK in augmenting such responses. Herein, this paradigm is challenged by demonstrating that recognition of _Borrelia burgdorferi_ not only triggers an inflammatory response in the absence of CD14, but one that is uncontrolled as a consequence of impaired PI3K/AKT/p38-MAPK signaling and negative regulation of TLR2. CD14 deficiency results in hyperphosphorylation of AKT and reduced activation of p38. Such aberrant signaling leads to decreased negative regulation by SOCS1, SOCS3, and CIS thereby engendering a more severe and persistent inflammatory response to _B. burgdorferi_. Perturbation of this CD14/p38-MAPK-dependent mechanism of immune regulation may underlie development of infectious chronic inflammatory syndromes

    Borrelia burgdorferi Requires the Alternative Sigma Factor RpoS for Dissemination within the Vector during Tick-to-Mammal Transmission

    Get PDF
    While the roles of rpoSBb and RpoS-dependent genes have been studied extensively within the mammal, the contribution of the RpoS regulon to the tick-phase of the Borrelia burgdorferi enzootic cycle has not been examined. Herein, we demonstrate that RpoS-dependent gene expression is prerequisite for the transmission of spirochetes by feeding nymphs. RpoS-deficient organisms are confined to the midgut lumen where they transform into an unusual morphotype (round bodies) during the later stages of the blood meal. We show that round body formation is rapidly reversible, and in vitro appears to be attributable, in part, to reduced levels of Coenzyme A disulfide reductase, which among other functions, provides NAD+ for glycolysis. Our data suggest that spirochetes default to an RpoS-independent program for round body formation upon sensing that the energetics for transmission are unfavorable

    CD14 Signaling Restrains Chronic Inflammation through Induction of p38-MAPK/SOCS-Dependent Tolerance

    Get PDF
    Current thinking emphasizes the primacy of CD14 in facilitating recognition of microbes by certain TLRs to initiate pro-inflammatory signaling events and the importance of p38-MAPK in augmenting such responses. Herein, this paradigm is challenged by demonstrating that recognition of live Borrelia burgdorferi not only triggers an inflammatory response in the absence of CD14, but one that is, in part, a consequence of altered PI3K/AKT/p38-MAPK signaling and impaired negative regulation of TLR2. CD14 deficiency results in increased localization of PI3K to lipid rafts, hyperphosphorylation of AKT, and reduced activation of p38. Such aberrant signaling leads to decreased negative regulation by SOCS1, SOCS3, and CIS, thereby compromising the induction of tolerance in macrophages and engendering more severe and persistent inflammatory responses to B. burgdorferi. Importantly, these altered signaling events and the higher cytokine production observed can be mimicked through shRNA and pharmacological inhibition of p38 activity in CD14-expressing macrophages. Perturbation of this CD14/p38-MAPK-dependent immune regulation may underlie development of infectious chronic inflammatory syndromes

    Molecular Evidence for a New Bacteriophage of Borrelia burgdorferi

    Get PDF
    We have recovered a DNase-protected, chloroform-resistant molecule of DNA from the cell-free supernatant of a Borrelia burgdorferi culture. The DNA is a 32-kb double-stranded linear molecule that is derived from the 32-kb circular plasmids (cp32s) of the B. burgdorferi genome. Electron microscopy of samples from which the 32-kb DNA molecule was purified revealed bacteriophage particles. The bacteriophage has a polyhedral head with a diameter of 55 nm and appears to have a simple 100-nm-long tail. The phage is produced constitutively at low levels from growing cultures of some B. burgdorferi strains and is inducible to higher levels with 10 ΞΌg of 1-methyl-3-nitroso-nitroguanidine (MNNG) ml(βˆ’1). In addition, the prophage can be induced with MNNG from some Borrelia isolates that do not naturally produce phage. We have isolated and partially characterized the phage associated with B. burgdorferi CA-11.2A. To our knowledge, this is the first molecular characterization of a bacteriophage of B. burgdorferi

    Analysis of Promoter Elements Involved in the Transcriptional Initiation of RpoS-Dependent Borrelia burgdorferi Genes

    No full text
    Borrelia burgdorferi, the causative agent of Lyme disease, encodes an RpoS ortholog (RpoS(Bb)) that controls the temperature-inducible differential expression of at least some of the spirochete's lipoprotein genes, including ospC and dbpBA. To begin to dissect the determinants of RpoS(Bb) recognition of, and selectivity for, its dependent promoters, we linked a green fluorescent protein reporter to the promoter regions of several B. burgdorferi genes with well-characterized expression patterns. Consistent with the expression patterns of the native genes/proteins in B. burgdorferi strain 297, we found that expression of the ospC, dbpBA, and ospF reporters in the spirochete was RpoS(Bb) dependent, while the ospE and flaB reporters were RpoS(Bb) independent. To compare promoter recognition by RpoS(Bb) with that of the prototype RpoS (RpoS(Ec)), we also introduced our panel of constructs into Escherichia coli. In this surrogate, maximal expression from the ospC, dbpBA, and ospF promoters clearly required RpoS, although in the absence of RpoS(Ec) the ospF promoter was weakly recognized by another E. coli sigma factor. Furthermore, RpoS(Bb) under the control of an inducible promoter was able to complement an E. coli rpoS mutant, although RpoS(Ec) and RpoS(Bb) each initiated greater activity from their own dependent promoters than they did from those of the heterologous sigma factor. Genetic analysis of the ospC promoter demonstrated that (i) the T(βˆ’14) in the presumptive βˆ’10 region plays an important role in sigma factor recognition in both organisms but is not as critical for transcriptional initiation by RpoS(Bb) as it is for RpoS(Ec); (ii) the nucleotide at the βˆ’15 position determines RpoS or Οƒ(70) selectivity in E. coli but does not serve the same function in B. burgdorferi; and (iii) the 110-bp region upstream of the core promoter is not required for RpoS(Ec)- or RpoS(Bb)-dependent activity in E. coli but is required for maximal expression from this promoter in B. burgdorferi. Taken together, the results of our studies suggest that the B. burgdorferi and E. coli RpoS proteins are able to catalyze transcription from RpoS-dependent promoters of either organism, but at least some of the nucleotide elements involved in transcriptional initiation and sigma factor selection in B. burgdorferi play a different role than has been described for E. coli
    • …
    corecore