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Eggers, Christian H., Ph.D., May 2000 Biochemistry/Microbiology 
Molecular Biology Emphasis

Identification and Characterization of a Bacteriophage of Borrelia burgdorferi

Director: Dr. D. Scott Samuels

We have identified a bacteriophage o f the Lyme disease spirochete, Borrelia 
burgdorferi. This bacteriophage has a polyhedral head with a diameter of 46 nm and a 
contractile tail 92 nm in length. Previously, several bacteriophage-like particles have 
been visualized in association with B. burgdorferi, though none have been characterized 
at the molecular level. We have designated the bacteriophage described here <j>BB-l.

d>BB-l packages 32 kilobase pairs (kb) of linear double-stranded DNA with non- 
covalently closed ends. The lysogenic prophage has been mapped to the 32-kb circular 
plasmid (cp32) family of B. burgdorferi. The cp32s are a group o f closely-related 
plasmids and more than one of these cp32s can be maintained in a single cell. Restriction 
maps of the phage genome indicate that more than one cp32 is packaged, and the phage 
genome is circularly permuted and possibly terminally redundant.

The <j>BB-l prophage is inducible from B. burgdorferi strains CA.11-2A and B31, as 
well as Borrelia bissettii strain DN127, with 10 pg ml'1 l-methyl-3-nitro-nitroso- 
guanidine (MNNG). Coinciding with phage release, and a moderate decrease in cell 
density, is an increase in the synthesis o f the BlyA and BlyB proteins, a possible holin- 
like system implicated in host cell lysis.

We have inserted a kanamycin-resistance cassette into one of the cp32s of B. 
burgdorferi CA-11.2A. <j>BB-l packages the cp32 containing the kanamycin-resistance 
cassette and is capable o f transducing the antibiotic resistance marker into B. burgdorferi 
strains CA-11.2A, B31, and a high passage clone o f strain SH2-82, 1A7. This is the first 
direct evidence of lateral gene transfer in B. burgdorferi.
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Chapter 1 

Introduction

1.1 Borrelia burgdorferi and Lyme disease.

With more than 10,000 new cases reported each year between 1993 and 1997, 

Lyme disease is the most common arthropod-borne disease in the United States (17, 45, 

53, 118). According to the Centers for Disease Control and Prevention, the annual 

reported incidence of Lyme disease in the United States has increased 25-fold since 

national surveillance began in 1982 (44, 45). An etiological agent of Lyme disease, 

Borrelia burgdorferi, is a member o f the spirochetes, a group of phylogenetically distinct 

bacteria that also includes the human pathogens that cause relapsing fever, leptospirosis 

and syphilis (12, 30, 161).

In the United States, B. burgdorferi is transmitted by hard-bodied ticks, the deer 

tick (Ixodes scapularis) in the northeastern and north-central regions and the western 

black-legged tick {Ixodes pacificus) on the Pacific coast (30, 31,46). Humans serve only 

as accidental hosts, interrupting the normal cycle of transmission of the bacterium 

between the tick and a wild vertebrate, usually a rodent (66, 146).

The earliest manifestation o f Lyme disease is a characteristic ‘bull’s eye’ skin 

rash, or erythema migrans, at the site o f infection, accompanied by a self-limited flu-like 

illness (21). At this stage, the disease can be controlled and treated with proper therapy, 

including the use of the antibiotics amoxicillin or doxycycline (54). In as many as 70% 

of untreated patients, late manifestations of this bacterial invasion can result in the 

dysfunction of the central nervous system and chronic arthritis (158).

l
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There are three recognized closely-related species of Borrelia that have been 

implicated in causing human disease, although more than ten genospecies (closely-related 

species that are distinguishable only by genomic analysis) comprise Borrelia burgdorferi 

sensu lato (13, 104, 182). In North America, B. burgdorferi sensu stricto is the 

predominant agent of Lyme disease, but in Europe all three disease-causing species are 

found, with Borrelia garinii and the Borrelia afzelii being more prevalent (157).

Observed regional differences in the manifestations of Lyme disease are probably related 

to different genospecies of B. burgdoferi sensu lato (4, 158, 159, 162, 183).

1.2 The complex genome o f B. burgdorferi.

B. burgdorferi has a complex genome consisting o f a linear chromosome and both 

linear and circular plasmids (Figure 1) (15, 18, 2 0 ,4 0 ,4 2 , 43, 51, 67, 68, 152,188). The 

ends of the linear DNA molecules of B. burgdoferi are covalently closed hairpin loops, 

similar to the ends of the vaccinia virus (18, 41, 68, 83, 84). The prophage of the 

coliphage N15 is the only other prokaryotic linear replicon identified to date containing 

analogous telomeric hairpin loops (85, 173, 174).

Some isolates of B. burgdoferi can contain up to 21 different plasmids often 

sharing regions o f DNA homology and, where examined, having a copy number per cell 

equal to that of the chromosome (1 6 ,4 0 ,4 2 ,4 3 ,6 8 , 82, 107, 121, 153, 169, 196). With 

an approximate size o f 1.5 million base pairs, more than 40% of the genomic DNA of B. 

burgdoferi can be contained in extrachromosomal elements (42, 68). Long-term 

cultivation of B. burgdoferi can result in the loss of some of the plasmids, with an 

accompanying decrease in infectivity or pathogenesis, suggesting an important role for 

some plasmid-encoded proteins (15, 119, 147, 152, 188). Included in the number of
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chromosome (910 kbp)

■ ■ > lp56

. Ip54

< =  lp38

< = »  lp36

< =  lp28 (x4)

■------ > lp25

=  lpl7

Figure 1. The complex genome of Borrelia burgdorferi. The genomic complement of the 

sequenced isolate, B. burgdorferi strain B31, is represented in this figure. This isolate is 

believed to be missing both a 5-kb and a 21-kb linear plasmid and at least two cp32s 

found in the original B31 isolate (42, 68). There are also plasmids found in other B. 

burgdorferi sensu lato strains that are not found in B31, including two slightly different 

18-kb circular plasmids, both derived from cp32 (32, 168). The plasmids are named for 

the topology o f the molecule [linear plasmid (lp), circular plasmid (cp)] and the

approximate size in kb. This schematic is an adaptation from Fraser, et al., Nature 1997

(68).

plasmid-encoded genes with assigned products are several genes for major outer surface 

proteins [for review see (42,68)] and two genes important in purine nucleotide 

biosynthesis, guaA and guaB (108).

©  cp32 (x7)

©  cp26

® cp9
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1.3 The 32-kb circular plasmids.

One of the B. burgdorferi plasmids, the 32-kb circular plasmid (cp32), has several 

related but distinct isoforms (42, 43, 121, 169, 196). In B. burgdorferi strain B31 there 

appear to be seven or more members of the cp32 family and many of these can be 

maintained in a single isolate (43). A complete cp32 is also inserted into the large linear 

56-kb plasmid (68) and lp54 may contain an ancient integration of a cp32 (42). 

Additionally, the unstable small circular plasmids (<10 kb) and c p l8 are basically 

truncated cp32 molecules (32,48, 59, 68, 168).

The members of the cp32 family share large regions of homologous DNA that 

include almost the entire plasmid. There are three regions of significant variability that 

correspond to: ( 1) the putative partitioning region, (2) a region encoding three families of 

lipoproteins, including the OspE-related proteins, the OspF-related proteins, and a group 

of proteins that contain OspE/F-like leader sequences (Elp), but do not otherwise 

resemble the other two groups (although all three families are also categorized under the 

designation Erp for OspE/F-related proteins), and (3) the region encoding the multicopy 

lipoprotein genes (mlp) (5, 32,42, 43, 97, 121, 167-169, 190, 196). Many of the 

lipoprotein genes encoded on the cp32s are selectively expressed within the mammalian 

host (111, 166, 190). The variability of the lipoproteins encoded on the different cp32s 

has been proposed as a possible mechanism of immune evasion and establishment of 

chronic infection, suggesting an evolutionary rationale for the physiological cost that 

maintaining several homologous replicons might have on a cell (32, 167, 172, 190).

Casjens et al. have proposed that the cp32 molecules may be the genomes o f  

lysogenic prophages (40,43). The authors cite several lines of evidence for this
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hypothesis, including the conserved size of the ubiquitous cp32 molecules among B. 

burgdorferi sensu lato strains and the apparent gene orders and transcription patterns of 

the cp32 molecules, consistent with other known bacteriophages (43).

1.4 Bacteriophages o f spirochetes.

Bacteriophages. Bacteriophages, viruses that infect bacteria, have long been 

recognized as a cornerstone of molecular biology (3, 91). A bacteriophage and its host 

are intimately associated and the two often share an evolutionary history (2, 49). Some 

phages, particularly those that can package and transduce antibiotic-resistance markers or 

those that encode virulence factors that contribute to the spread or maintenance of the 

bacterial host, can have profound effects on bacterial physiology or epidemiology (3,47).

Because of their small genomes and inherent dependence upon at least some of 

the bacterial hosts’ cellular machinery, the use of bacteriophages as tools for dissecting 

DNA replication has been essential for understanding this process in many bacterial 

systems (95). Additionally, bacteriophages constitute naturally-occurring vectors for 

lateral gene transfer and may be used to shuttle genes between bacterial cells (25, 95).

Temperate phages, those that can either lysogenize or abrogate the host machinery 

for a lytic infection, have been used to study recombination, stress response and 

replication (95). In a Iysogen, the phage genome, termed the prophage, is maintained 

quiescently and is propagated along with the host DNA. During lysogeny, a prophage 

can be integrated into the host chromosome (like X phage), maintained as an 

autonomously replicating plasmid (like phage PI) or maintained in either of those two 

states (like P22) (25).
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Bacteriophages of spirochetes other than Borrelia. Bacteriophage-like 

particles in association with a spirochete were first observed in 1969 (126). In fact, 

phage particles spontaneously released from a number of animal-associated spirochetes 

have been visualized by electron microscopy (23, 52, 125, 127, 133). Bacteriophage-like 

particles have also been seen in association with human spirochetes that were either 

treated with mitomycin C, a DNA-strand crosslinker (33, 110) or, rarely, left untreated 

(34).

Three lytic phages of Leptospira biflexa, a saprophytic species, were isolated 

from sewage water on the outskirts o f Paris. These phages were identified by electron 

microscopy and the nucleic acid from the virions was characterized as double-stranded 

DNA ranging from 50 to 60 kb. These bacteriophages represented the first molecular 

characterization of a phage associated with a spirochete and a potentially useful tool for 

studying the molecular genetics of Leptospira species (134).

VSH-1, a generalized transducing phage released from Brachyspira (formerly 

Serpulina) hyodysenteriae cells treated with mitomycin C, was used to demonstrate the 

first instance of lateral gene transfer in a spirochete (88). This phage packages ~7.5-kb of 

host genomic DNA and has been used to transduce chromosomal antibiotic-resistant 

markers between strains of B. hyodysenteriae (87, 88).

Bacteriophage of Borrelia. Bacteriophage-like particles with elongated heads 

and straight tails were described in association with B. burgdorferi soon after the 

spirochete was identified as a causative agent o f Lyme disease (77). Structurally- 

identical phage particles were also reported in a relapsing fever agent, Borrelia hermsii 

(19). More recently, two different bacteriophages, both with isometric heads, but one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with a contractile tail and one with a non-con tractile tail, were released from clinical B. 

burgdorferi isolates treated with ciprofloxacin, a topoisomerase-inhibitor (117, 144). We 

also know o f a single event when, a phage-like particle packaging host DNA, like PBSX 

(8) and VSH-1 (87, 88), was recovered from a spontaneously-lysed culture of B. 

burgdorferi (137). This was an isolated incident and we have not observed the release of 

this particle in our studies.

Until this work, no report had characterized a bacteriophage of B. burgdorferi 

beyond structural observations by electron microscopy. Here we identify and present the 

initial molecular characterization of a bacteriophage o f B. burgdorferi, which we have 

named <|>BB-1. This bacteriophage is spontaneously released from growing cultures of a 

California isolate of B. burgdorferi and the prophage is inducible from at least two other 

strains with 1-methyl-3-nitro-nitrosoguanidine (MNNG). <j>BB-l packages the 32-kb 

circular plasmids, molecules that may play an important role in the infection and 

virulence of B. burgdorferi. We have recently demonstrated the ability o f this 

bacteriophage to transduce an antibiotic-resistance marker between cells, the first direct 

evidence of lateral gene transfer in B. burgdorferi.

With this work as a foundation, <)>BB-1 may become a tool for studying DNA 

metabolism and other molecular processes of the B. burgdorferi plasmids. In addition to 

being the first B. burgdorferi phage characterized at a molecular level, <J>BB-1 has several 

features that make this phage intrinsically interesting and worth further study. These 

include the constitutive autonomous replication of the prophage as a circular plasmid, the 

ubiquity o f the prophage throughout the Lyme disease complex, a population of phage
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heads containing more than one isoform o f the phage genome, a possible role in host- 

immune invasion and in the molecular evolution of different cp32 molecules, and a 

requirement, shared with the bacterium, for maintenance and selective expression within 

two very different hosts (invertebrate and mammalian).

The physical identification of $BB-1, the initial characterization of the packaged 

nucleic acid and a method of inducing the prophage are presented in chapter 3. More 

extensive analyses of the nucleic acid content of the phage, including preliminary 

mapping studies, are described in chapter 4. The search for possible phage proteins is 

discussed in chapter 5 and transduction by <)>BB-1 is analyzed in chapter 6 .
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Chapter 2 

Materials and Methods

2.1 General methods.

Bacterial strains. B. burgdorferi sensu stricto strain C A -11.2A (109), a clone of 

the California B. burgdorferi strain CA-11, was provided by P. Rosa (Rocky Mountain 

Laboratories, Hamilton, MT). Low passage CA-11 (149), low-passage B31-1M1T, and 

the high passage SH2-82 clone, 1A7, were provided by T. Schwan (Rocky Mountain 

Laboratories). B. burgdorferi 297 (160) was obtained from M. Caimano and J. Radolf 

(University o f  Connecticut Health Center, Farmington, CT) and the low passage B. 

burgdorferi strain B31-CDC was provided by S. Wikel (University o f Connecticut Health 

Center, Farmington, CT). B31-UM and HB19 (161) were part o f  our collection. All 

other isolates of B. burgdorferi and other Borrelia species were kindly provided by R. 

Marconi (Medical College of Virginia at Virginia Commonwealth University, Richmond, 

VA). Unless otherwise specified, the B. burgdorferi strain B31 used in this study was 

B31-UM, designated by us to indicate the high passage strain from our laboratory.

Culture conditions. Bacterial isolates were routinely cultivated in Barbour- 

Stoenner-Kelly (BSK) complete medium (14) (Sigma; St. Louis, MO) at 34°C with a 5% 

CO2 atmosphere. Culture densities were determined using a modification o f a previously 

described protocol (138). One ml o f culture was centrifuged at room temperature at 

14,000 x g  for 5 min. The pellet was washed with 1 ml of dPBS (138 mM NaCl, 2.7 mM 

KC1, 8.1 mM Na2HP04 , 1.5 mM KH2PO4), centrifuged as above, and the pellet 

resuspended in 1 ml dPBS. The absorbance of the sample was measured at 600 nm using

9
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10
a Spectronics® Genesys 2 spectrophotometer (Rochester, NY). The Aeoo was 

multiplied by the factor 1.4 x  109 to calculate the number of cells per ml of culture.

Bacteriophage recovery. CA-11.2A cells were cultured as described above until 

the cells reached log phase (>107 cells m l1), approximately 3 days after a 1:100 

inoculation. All subsequent steps in the recovery of the phage were performed at 4°C.

The culture was centrifuged at 6,000 x g for 10 min and the supernatant was collected. 

The culture supernatant was precipitated with polyethylene glycol (PEG) by modifying a 

previously described protocol for concentrating phage (135). Precipitations were done in 

aliquots <100 ml for the best results as determined by the amount o f phage yielded per ml 

of original culture supernatant. NaCl was added to a 1M final concentration (F. C.) and 

the supernatant was rotated for 1 h on a shaker, followed by centrifugation at 5,000 x g 

for 10 min. The supernatant was retained and 10% (w/v) PEG 8000 (we have found that 

using Sigma PEG 8000 results in better yields) was slowly added. The culture was 

rotated for 1 h, and the precipitate was recovered by centrifugation at 6,000 x g  for 10 

min. The supernatant was decanted and the precipitate was resuspended in suspension 

medium (SM) (100 mM NaCl, 10 mM MgSO.*, 50 mM Tris-HCl [pH 7.5]; no gelatin). 

The resuspension volume was 400 p.1 of SM per 10 ml o f original culture supernatant.

The resuspended material was extracted once with an equal volume o f chloroform, and 

the aqueous layer recovered. The sample was extracted a second time with 10% 

chloroform and the aqueous layer, which contained the phage, was recovered. The 

chloroform treatments were critical for PEG removal, as polyethylene glycol will inhibit
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many downstream enzymatic reactions, including restriction digests. Samples were 

stored at 4°C.

DNA extraction. For the extraction of extracellular phage DNA from cell-free 

supernatants, precipitated samples were prepared as described above. Prior to DNA 

extraction, MgCli (1 M stock) was added to bring the sample to 16 mM (F.C.) and the 

samples were treated at 37°C for 0.5 h with 1 unit of RQl-DNase (Promega; Madison, 

WI) per 250 pi of sample. After DNase treatment, EDTA (0.5 M stock) was added to 

bring the sample to 100 mM (F.C.) and the sample was treated with a final concentration 

of 0.3% sodium dodecyl sulfate (SDS) (10% stock) and 100 pg ml'1 of proteinase K (PK) 

(20 mg ml'1 stock) at 65°C for 10 min (171). The sample was extracted twice, once with 

an equal volume of phenol-chloroform-isoamyl alcohol (25:24:1) and a second time with 

an equal volume of chloroform-isoamyl alcohol (24:1). The aqueous layer was recovered 

and the DNA was precipitated with 200 mM NaCl (F.C.) and two volumes of absolute 

ethanol (EtOH) as described previously (138). The sample was incubated at -20°C for 

>30 min, then centrifuged at 14,000 x  g for 20 min at 4°C. The pellet was washed with 

70% EtOH and centrifuged at 14,000 x  g for 5 min at 4°C. The DNA pellet was 

resuspended in 20 pi of TE (10 mM Tris-HCl [pH 8.0], 1 mM EDTA) per 100 pi of 

original PEG-precipitate.

Total chromosomal DNA was extracted from B. burgdorferi cells based on a 

protocol described previously (138). B. burgdorferi cells were collected by 

centrifugation at 6,000 x  g for 10 min at 4°C, washed in 1 ml dPBS for every 10 ml of 

original culture, pelleted again as above, and resuspended in a final volume of 0.2 ml
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TES (50 mM Tris-HCl [pH 8.0], 50 mM EDTA, 15% sucrose; autoclave and store at 

4°C) for every 10 ml o f original culture. The cells were lysed by the addition o f 1% SDS 

(F.C.) and incubated for 30 min at 37°C after 4 mg ml'1 PK (F.C.) was added. The DNA 

sample was extracted twice with organic solvents, and precipitated with NaCl and EtOH 

as described above. The precipitated DNA was resuspended in 30 pi TE per 10 ml of 

original supernatant.

Agarose gel electrophoresis. DNA samples were heated for 3 to 5 min at 65°C 

in 1% Ar-lauryIsarcosine, 10 mM EDTA, 3% Ficoll 400, 0.05 mg ml*1 bromophenol blue 

(BPB) and 0.05 mg ml'1 xylene cyanole and cooled briefly prior to loading. For 

conventional gel electrophoresis, the DNA was resolved on agarose gels (SeaKem LE; 

Bio*Whittaker Molecular Applications; Rockland, ME) o f percentages as indicated, 

usually 0.5%, in TAE (40 mM Tris-acetate, 1 mM EDTA) at 30 V (2.4 V cm'1) for 5 h or 

as indicated. Gels were stained with 0.5 pg ml-1 ethidium bromide (EtBr) for 0.5 to 1 h 

and destained in water for 1 to 2 h. Alternatively, 0.5 pg ml'1 EtBr was sometimes added 

directly to the gel prior to casting. The DNA was visualized on a UV transilluminator 

and images were captured on a Gel Doc 1000 system (Bio-Rad; Hercules, CA).

For field-inversion gel electrophoresis (FIGE), DNA samples were prepared as 

above. Samples were resolved on 0.8% agarose gels (SeaKem GTG; Bio*Whittaker 

Molecular Applications) in TBE (45 mM Tris-borate, 2 mM EDTA) at 80 V (4.3 V cm'1). 

Field-inversion was performed using a PPI-200 programmable power inverter (MJ 

Research; Waltham, MA) with the programs determined using the GelTimes software 

supplied by the manufacturer. The running buffer was supplemented with 100 mM
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glycine (as suggested by the manufacturer; we recommend this addition to slow the 

oxidation of the platinum wire caused by field-inversion) and the buffer was recirculated 

during electrophoresis. After electrophoresis, gels were stained with EtBr and visualized 

as described above.

Two-dimensional gel electrophoresis was performed essentially as described 

previously (138). A 20 pi sample of total B. burgdorferi DNA was fractionated on a 

0.35% agarose gel in TAE at 20 V (1.1 V cm'1) for 16 h. After 16 h, the gel was rotated 

90° and equilibrated with 15 pM chloroquine for 8 h. Electrophoresis was continued in 

the second dimension in the presence of 15 pM chloroquine at 20 V for another 16 h.

The gel was soaked in three changes of water over 5 h to remove the chloroquine before 

staining with EtBr and visualizing as described above.

Southern hybridization. Gels were vacuum-blotted to either Hybond N* nylon 

membrane (Amersham Pharmacia Biotech; Piscataway, NJ) or Immobilon-Ny+

(Millipore; Bedford, MA) and cross-linked as described previously (105). Vacuum- 

blotting was carried out at <50 mbars pressure with 0.25 M HC1 for 4 min, denaturation 

solution (0.5 M NaOH, 1.5 M NaCl) for 5 min, neutralization solution (0.5 M Tris-HCl 

[pH 7.2], 1.5 M NaCl, 1.0 mM EDTA) for 5 min and 20X SSC (3 M NaCl, 0.3 M sodium 

citrate) for 1 h. Solutions were aspirated o ff at the end of each step. The wells and 

markers were marked with a membrane-marking pen, and the blot cross-linked in a UV 

stratalinker 1800 (Stratagene; La Jolla, CA) as instructed by the manufacturer.

Probes for Southern hybridization were generated from source DNA as indicated 

in each experiment. One hundred nanograms of DNA to be used as a probe were labeled
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with [a-32P]dATP with a random primer kit (Prime-it II; Stratagene) as instructed by 

the manufacturer. Radiolabeled probes were purified from unincorporated label by 

passage through G-SO spin columns (Boehringer Mannheim; Indianapolis, IN) as 

instructed by the manufacturer. The blots were prehybridized in 15 to 20 ml o f either 

Quikhyb (Stratagene) or hybridization solution [6X SSC, 0.5% SDS, 5X Denhardt’s (50X 

Denhardt’s: 5 g Ficoll 400, 5 g polyvinylpyrrolidone, 5 g fraction V BSA in 500 ml; filter 

and store at -20°C)] supplemented with 1 mg o f salmon sperm DNA (boiled for 5 min 

and cooled briefly on ice prior to addition) for 15 to 20 min at 68°C with rotation in a 

hybridization oven (Hybaid; Franklin, MA). After prehybridization, the radiolabeled 

probe was added to the hybridization buffer and hybridization was conducted for >1 h 

(Quikhyb) or >6 h (hybridization solution) at 68°C. The blots were washed twice in 2X 

SSC-0.1%SDS at 25°C (15 min each) and once at 50°C in 0.1X SSC-0.1% SDS (30 min), 

wrapped in cellophane and exposed to either Hyperfilm ECL (Amersham Pharmacia) or 

Fujifilm RX film for 16 to 24 h at -80°C with intensifying screens.

Membranes to be reprobed were stripped in a hybridization bottle with 15 to 20 

ml of mild stripping solution (5 mM Tris-HCl [pH 8.0], 2 mM EDTA, 0.1X Denhardt’s 

solution). Stripping was carried out in a hybridization oven at 65°C for >2 h. If stripping 

was not complete after this relatively mild treatment, then the membranes were washed in 

0.4 M NaOH for 30 min at 45°C, followed by two washes at room temperature in 

moderate stripping solution (200 mM Tris-HCl [pH 7.0], 2 mM EDTA, 0.1X Denhardt’s 

solution) for 30 min each. If membrane counts were still above background, several 

hundred ml of 0.1% SDS were brought to a boil and poured onto the membrane, then
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allowed to cool to room temperature. This last protocol is very harsh on the membrane 

and was used only as a final option (10, 62). Stripped membranes were laid on Fujifilm 

RX film 12 to 16 h to ensure the previous probe was removed.

Induction o f the 0BB-1 prophage with l-methyl-3-nitro-nitrosoguanidine 

(MNNG). Isolates were cultured in BSK  complete medium as described above until a 

density of ~5 x 107 cells ml'1 was reached. Cells were pelleted at 6,000 x  g  and the 

supernatant was collected for PEG-precipitation as described above. The cell pellet was 

resuspended in a volume of BSK complete medium equal to that of the original culture. 

The sample was treated with 10 pg m l'1 MNNG (Sigma) and incubated at 34°C for 2 h. 

The cultures were centrifuged at 6,000 x  g  and the supernatant was discarded as waste. 

The cells were resuspended in an equal volume of BSK complete medium and allowed to 

recover for 60 h at 34°C. After 60 h, the cells were pelleted at 6,000 x  g and the 

supernatants were collected. Phage was precipitated and the DNA was extracted and 

resolved on a 0.5% agarose gel by conventional gel electrophoresis as described above. 

The gel was stained with EtBr as described above.

SDS-polyacrylamide agarose gel electrophoresis (PAGE). Unless otherwise 

described, proteins were resolved on 12.5% SDS-PAGE gels (0.375 M Tris-HCl [pH 

8.8], 0.1% SDS, 12.5% polyacrylamide [30% stock solution; 37.5:1 acrylamide to bis- 

acrylamide; Boehringer Mannheim], 0.24% N,N,N',N'-tetramethylethylenediamine 

[TEMED; Bio-rad], 0.025% ammonium persulfate, volume up to 10 ml with water; 

makes enough for two mini-gels). The electrophoresis was performed in a Mini-Protean 

II apparatus (Bio-Rad) as described by the manufacturer. Samples were diluted with
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either 2X or 4X SDS-PAGE loading dye (IX  SDS-PAGE loading dye: 62.5 mM Tris- 

HCl [pH 8.0], 2% SDS, 10% glycerol, 5% 2-mercaptoethanol, 1.25 x  10'3% BPB). The 

gels were electrophoresed at 100 V through a 3.8% stacking gel (0.125 M Tris-HCl [pH 

6.6], 0.1% SDS, 3.8% polyacrylamide (same solution as above), 0.24% TEMED, 0.025% 

ammonium persulfate, volume up to 4 ml with water, makes enough for two mini-gels) 

and then resolved at 200 V through the 12.5% running gel until the tracking dye reached 

the bottom of the gel. Gels were either stained with Coomassie brilliant blue (CBB; 

0.25% CBB-R in 40% methanol, 12% acetic acid; stir overnight and filter before use) and 

destained in 30% methanol, 10% acetic acid or stained with the Silver Stain Plus kit (Bio- 

Rad) as instructed by the manufacturer.

W estern blotting. Proteins were resolved by SDS-PAGE as described for each 

experiment. Five pi o f pre-stained broad range markers were used as standards (Bio- 

Rad). For 12.5% gels, the electrophoresis was continued until the dye front reached the 

bottom of the gel. For 17.5% gels, the gels were electrophoresed as described above until 

the aprotinin marker (6.5 kDa) was ~1 cm from the bottom of the gel, approximately 30- 

45 min after the blue dye front migrated off of the gel.

The gels to be blotted were soaked in two changes of IX blotting buffer (20 mM 

K2HPO4), 15 min each. The gels were then blotted to PVDF membranes (Immobilon-P; 

Millipore; prepared by wetting in methanol, rinsing with water and then soaking in IX 

blotting buffer). Western blotting was performed at 30 V for 90 min in a Mini Trans- 

Blot® Electrophoretic Transfer Cell (Bio-Rad) in IX blotting buffer as described by the 

manufacturer. After blotting, the membranes were soaked in dPBS/Tween (500 pi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17
Tween-20 in 1 L dPBS) for 20 min and then incubated overnight at 4°C in the primary 

antibody solution (diluted to the appropriate concentration in 20% fetal bovine serum in 

dPBS/Tween; stored at 4°C in 0.02% NaNs).

After the primary antibody was removed, the membranes were washed in five 

changes of dPBS/Tween (5 min each). Ten pi of the secondary antibody [hydrogen 

peroxidase-conjugated goat-a-rabbit (Bio-Rad); diluted in 25 ml dPBS/Tween] were 

added to the membranes for 90 min. After the secondary antibody was removed, the 

blots were washed three times in dPBS/Tween for 5 min each. Blots were then rinsed in 

several changes of water over 30 min. Before development, the membranes were washed 

one time in IX dPBS for 5 min. For developing each Western, a 4-chloro-l-napthol 

tablet (Sigma) was dissolved in 10 ml o f MeOH, then 40 ml of dPBS were added, 

followed by the addition of 20 pi of 30% hydrogen peroxide. The solution was added to 

the membrane. When development was complete, the blots were air-dried for 5 to 10 

min and the images were captured by a scanner.

2.2 Chapter 3 methods.

Analysis o f the extracellular phage nucleic acid. Nucleic acid was extracted 

from cell-free supernatants as described above. To demonstrate the susceptibility of the 

DNA to DNase after protein removal, the DNA extracted from 100 pi of PEG- 

precipitated sample was resuspended in 20 pi o f water instead of TE, and MgCh and 

RQ1-DNase were added as described above. A sample that was treated with DNase prior 

to protein removal and the sample that was treated with DNase post-protein removal were 

resolved on 0.5% agarose gels by conventional electrophoresis as described above.
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Additionally, similarly prepared samples were resolved on 15-cm agarose gels by FIGE 

using Program 2 on the PPI-200 programmable power inverter. Electrophoresis was 

performed for 16 h, after which the gel was stained with EtBr.

To denature DNA samples for the covalently closed ends assay, 10 pi o f either 

recovered extracellular DNA or lpl7 DNA were treated with an equal volume of 0.2 N 

NaOH and incubated at 25°C for 10 min. Four pi o f 1 M Tris-HCl (pH 8.0) were added 

and the sample was incubated at 25°C for 5 min. Samples were prepared and resolved by 

electrophoresis on 0.5% agarose gels as described above.

To purify the small linear plasmid of B. burgdorferi for the covalently closed ends 

assay, plasmid DNA was extracted from a log-phase B. burgdorferi B31 culture with the 

Wizard Midipreps Plus DNA purification system (Promega) as instructed by the 

manufacturer. Plasmids were resolved by electrophoresis (see above) and sized with the 

X monocuts marker (New England Biolabs; Beverly, MA). The linear 17-kb plasmid was 

excised from the gel and extracted with the QIAEXII gel extraction kit (Qiagen;

Valencia, CA) as instructed by the manufacturer.

Visualization o f bacteriophage particles. A culture of B. burgdorferi CA-11.2 A 

was induced with MNNG and the phage particles precipitated as above. The resuspended 

particles were ultracentrifuged at 100,000 x  g for 0.5 h at 4°C in a TL100 (Beckman;

Palo Alto, CA) in a polycarbonate tube (TLA 100.2 rotor). The pellet was resuspended in 

1 ml SM and ultracentrifuged again at 40,000 x  g for 1 h at 4°C in a TL100 (TLA 100.2 

rotor, polycarbonate tube). The pellet was finally resuspended in 100 pi SM. A drop of 

precipitated phage suspension was applied to a grid (copper 300-mesh, carbon-coated)
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(Ted Pella; Redding, CA). The sample was stained with 1% phosphotungstic acid 

(PTA) and examined on a Hitachi 7100 transmission electron microscope (TEM). More 

than twenty-five phage heads and tails were measured and the values averaged to 

determine approximate size o f the phage heads and tails (61). The standard error of the 

mean was determined (SEM = ct/Vn) for both structures.

Identifying the prophage DNA. Twenty pi of total cellular B. burgdorferi CA-

11.2A DNA was fractionated on a 0.35% agarose gel by two-dimensional gel 

electrophoresis as described above. The chloroquine was removed from the gel; the gel 

was stained with EtBr and destained in water as described above. The gel was vacuum- 

blotted to Hybond-N+ for Southern hybridization also as described above.

The probes used for hybridization were either total phage D NA, prepared as 

described above and digested with HindSS. (New England Biolabs) as instructed by the 

manufacturer, or a small B. burgdorferi probe, ospCI-300 (cp26-specific). The probe 

was generated from a 1:100 dilution of total B. burgdorferi DNA by polymerase chain 

reaction (PCR) using a cocktail as described by the manufacturer o f the Taq polymerase 

(Sigma) (cycling parameters: 25 cycles of 92°C for 30 s, 50°C for 30 s, and 72°C for 1 

min; diluted 1:100 and amplified a second time) (Table 1).

The probes were labeled by random primer labeling using the Prime-it II kit. 

Southern hybridization was first performed with total phage DNA as described above 

using 15 to 20 ml of QuikHyb. The membrane was stripped using the mild stripping 

protocol described above before being probed a second time with the o.spCl-300 probe.

Cloning fragments o f phage DNA. Phage DNA was subjected to Hin&YQ.-
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digestion as described by the manufacturer (New England Biolabs). The fragments of 

phage DNA were ligated into the //indlll-site o f the pBluescript IISK+ cloning vector 

(Stratagene) using T4 DNA ligase (New England Biolabs) as instructed by the 

manufacturer. The pBluescript plasmid was previously digested with HindHl and the 

phosphates removed from the ends with calf-intestinal phosphatase (CIP) as instructed by 

the manufacturer (New England Biolabs). Colonies were screened on plates containing 

50 pg m rlcarbenicillin (Sigma) and spread with 15 pi 200 mg ml'1 EPTG and 20 pi 5 mg 

ml'1 X-Gal for blueMhite screening. White colonies were screened by PCR as described 

above using the SK/KS primer pair (Stratagene; 25 cycles o f 92°C for 30 s, 50°C for 30 s, 

72°C for 3 min). About 20 positive colonies were sequenced using the SK primer. The 

sequences were submitted to a BLAST search (114) to determine homology and identity 

to known sequences.

Determining bacteriophage titer. Bacteriophage particles were precipitated and 

resuspended in SM at a 25-fold concentration as described above (10 ml concentrated 

into 400 pi). The phage DNA was extracted and electrophoresed as described above for 

initial evaluation o f phage content and concentration. Two pi of extracted phage DNA 

were diluted into 98 pi of water and the optical density was measured at 260 nm. The 

A260 was multiplied by 50 (dilution factor) and the constant of 50 ng pi'1 DNA. The 

resulting number, which gives the concentration of phage DNA in ng pi'1, was divided by 

the approximate number of ng of DNA per cp32 molecule (one cp32 molecule equal one 

full 0BB-1 genome; the assumption was made that one phage head contains one 32-kb 

genome). The equation for the number of ng of DNA per cp32 molecule is:
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32,OCX) bp x  (1 mol bp x  [6.0 x  1023 bp]'1) x  (640 g x  [1 mol bp]'1) x  (1 ng x  [10‘9 g]'1)

1 phage genome = 1 cp32 = 32,000 bp = 3.4 x 10'8 ng of DNA per phage head

Using this constant and the concentration of the DNA, the number o f phage head 

equivalents in 1 pi of extracted sample can be approximated. Dividing this number by 

the concentration factor (a combination of both the concentration step from the original 

supernatant to the PEG-precipitated sample and the concentration step from the PEG- 

precipitated sample to the resuspended DNA) results in the titer of full-headed phage in 1 

pi of original culture supernatant (multiply by 1000 for the more traditional phage ml*1 

titer value).

Development of an induction protocol. To determine the effective concentration 

of MNNG for prophage induction, a batch culture was grown to mid- to late-log phase 

(>5 x  107 cells ml'1). The culture was centrifuged at 6,000 x  g  for 10 min, and the 

supernatant collected for PEG-precipitation as described above. The cell pellet was 

resuspended in a volume of BSK complete equivalent to the original culture and then 

separated into 10 ml aliquots prior to treatment with MNNG (stock concentration is 50 

mg ml'1 in dimethyl sulfoxide, stored at -20°C) from a range of 0 to 50 pg ml'1. After 2 h 

of exposure, the cultures were centrifuged at 6,000 x g for 10 min, the supernatant 

discarded as waste and the cells resuspended in 10 ml of BSK complete and incubated at 

34°C for 1 to 2 days. The supemantants were collected and assayed for phage DNA on a 

0.5% agarose gel as described above.
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To evaluate the kinetics o f MNNG-exposure on phage release, a batch culture 

was grown, centrifuged and the cells were resuspended as described above. The culture 

was divided into two equal samples. One sample culture was treated with 10 pg ml'1 

MNNG, split into 10 ml aliquots and incubated at 34°C for 0  to 6 h with a matched 

untreated control. After recovery, phage DNA was extracted from cell-free supernatants 

as described above. The DNA was resolved on a 0.5% agarose gel and stained with EtBr.

For the recovery time course, a -250 ml culture was grown to the appropriate 

density, centrifuged, the cell pellet resuspended as described above and then split into 

two aliquots, one treated with 10 pg ml*1 MNNG for 2 h and one untreated. After 2 h, 

both cultures were centrifuged and the cell pellets resuspende<l in fresh BSK complete. 

During recovery at 34°C, 10 ml samples were taken from both the treated and untreated 

cultures every 12 h (up to 108 h) and assayed. The supernatant was assayed for phage 

DNA as described above. The density of the cell pellet was determined by the Â oo as 

described above. The cell density at each time point was compared to the density at the 0 

time to determine relative growth and plotted on a logarithmic scale against time.

To assay various isolates for phage production in both untreated and MNNG- 

treated cultures, isolates were cultured in BSK complete medium as described above.

Cells were pelleted at 6,000 x  g and the supernatant was collected for PEG-precipitation 

as described above. The cell pellet was resuspended in a volume of BSK complete 

medium equal to that of the original culture and the culture was split into two equal 

aliquots. One aliquot was treated with 10 pg ml*1 MNNG as described above, while the 

other aliquot was handled in the same manner without M NNG treatment and served as an
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untreated control. After the 60 h recovery time, supernatants were collected from both 

the treated and untreated cultures. Phage was precipitated and the DNA extracted and 

resolved on a 0.5% agarose gel by conventional gel electrophoresis as described above. 

The gel was stained with EtBr, followed by the more sensitive GelStar nucleic acid stain 

(Bio*Whittaker Molecular Applications) as instructed by the manufacturer. After 

visualization, the gel was rinsed in water for >1 h to remove excess GelStar stain and 

then blotted and hybridized with a cp32-specific probe as described above. The cp32- 

specific probe was probe 4  (43), generated by PCR from total phage DNA (25 cycles of 

92°C for 30 s, 50°C for 30 s, and 72°C for 1 min; diluted 1:100 and amplified a second 

time) (Table 1).

2.3 Chapter 4 methods.

Variable region PCR. A variable region conserved among the cp32 molecules 

available in the database (42, 114, 176) was identified by a Clustal analysis (MacVector 

6.5.1, Oxford Molecular; Madison, WI) o f the B. burgdorferi B31 cp32 sequences. 

Oligonucleotides, designated VR1, were generated to highly conserved sequences 

flanking this region using MacVector (Table 1). The cp32-VRl reverse primer (27 

nucleotides) is conserved on all known cp32s and the cp32 integrated into lp56. The 

cp32-VRl (26 nucleotides) forward primer has one mismatch on cp32-9 and 2 

mismatches on lp56, but is conserved on all other known cp32s.

Amplification o f VR1 from the different cp32s was performed by PCR. The PCR 

mix was 5 units of Taq polymerase (Sigma), IX buffer (supplied by the manufacturer), 4 

mM MgCh, 0.2 mM each dNTP, and 50 pmol o f both the VR1F and VR1R primer per 

100 pi (remaining volume was water). The amplification was 25 cycles of 92°C for 1
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min, 45°C for 1 min, and 72°C for 3 min. The templates used were 1 pi o f total DNA, 

extracted as above, or 1 pi o f phage DNA, extracted as described above.

The PCR products were resolved on 0.8% agarose gels subjected to FIGE, as 

described above. The PPI-200 power inverter was programmed using the GelTimes 

software (MJ Research) based on a 25-cm agarose gel electrophoresed at 80V (2.6 V/cm) 

with a maximum resolution in the range of 2 to 6 kb. The time o f the electrophoresis was 

approximately 30 h. The gel was stained with EtBr as above. Variable region sizes were 

determined using Multi-analyst Software 1.0 (Bio-Rad).

Semi-quantitative PCR. DNA was extracted from uninduced CA-11.2A cells, 

CA-11.2A cells that were treated with MNNG according to the induction protocol as 

described above, and phage released from the MNNG-treated CA-11.2A cells. The 

template DNA was diluted 1:100 in water for amplification.

PCR using the VR1 primers was performed under the conditions described above 

with some modification. A sample was mixed as described above for each template, then 

divided into eight 20 pi aliquots. During PCR, an aliquot was removed from the 

Robocycler Gradient 96 thermocycler (Stratagene) after the extension incubation of every 

third cycle beginning after the sixth cycle. Samples were collected after cycle 6, 9, 12,

15, 18, 21, 24 and 27 (eight samples for each of the three DNA templates). The samples 

were electrophoresed and the gel was stained with EtBr as described for the VR1 PCR 

products above.

Restriction mapping of phage DNA. Phage DNA was extracted from the cell- 

free supernatants of MNNG-treated B. burgdorferi CA-11.2A as described above. The
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DNA was subjected to digestion with different restriction enzymes (New England 

Biolabs) as instructed by the manufacturer. Double digests with enzymes that required 

different buffers were performed in the optimal buffer suggested by the manufacturer.

Agarose gel electrophoresis was performed by FIGE as described above, with 

several modifications. The samples were resolved on a 0.8% agarose gel in 0.5X TBE 

running buffer supplemented with 100 mM glycine at 80 V (4.2 V cm'1) for 16 h. The 

program for the PPI-200 inverter was determined by the GelTimes software, based on 4.2 

V cm'1, a 15 cm gel, and a resolution of 2 to 40 kb. Gels were stained with EtBr as 

described above. After visualization, the gels were destained in water and then vacuum- 

blotted to Immobilon-Ny+ (we have found this to be a superior membrane for multiple 

probing/stripping cycles) as described above.

Southern hybridization was performed as described above with the following 

modifications. The probes used were the cp32-specific probes, probe 4 and probe 2 (43), 

a probe to the blyB operon (B) of cp32 kindly provided by Don Oliver (Wesleyan 

University, Middletown, CT) (50, 75), and two probes that were generated for this work, 

the VR1 probe (V) and a probe that flanks an NdeI-site (N) at the -20,000 bp region (see 

Figures 12 and 25). Probes 4, 2 and the blyB probe were generated by PCR as described 

for probe 4 above. Probe N was generated with the cp32SKMfeI primers (Table 1) 

essentially as described for probe 4, except an annealing temperature of 44°C was used. 

The V probe was generated using the cp32VRl primers (Table 1) as described above.

Hybridization was carried out in hybridization solution for > 6 h at 68°C. The 

blots were washed as described above, wrapped in cellophane and exposed to Fujifilm
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RX film for 16 to 24 h at -80°C with intensifying screens, as described above. 

Approximate sizes of the dominant fragments were determined manually by comparison 

to markers of known sizes and assembled into partial restriction maps. Blots to be 

reprobed were stripped in successively harsher solutions as described above until the 

previous probe was completely removed so that the next probe could be applied.

Size comparison of phage DNA and linearized CA-11.2A cp32s. CA-11.2A 

plasmids were extracted using Wizard Midipreps Plus as described above and digested 

with Apal, Bsu36l, Mscl, and Nrul, enzymes that are known to cut B 3 1 cp32s once or not 

at all (42, 114, 176). Based on Southern hybridization with probe 4  as above, Bsu36l was 

selected as an enzyme that linearizes at least one of the CA-11.2A plasmids. Undigested 

phage DNA extracted as described above and Bsu36I-digested C A -11.2A plasmid DNA 

were resolved on 0.8% agarose gels by FIGE for 30 h as described above. The 

electrophoresis parameters were based on resolving fragments between 30 and 35 kb on a 

15-cm gel. The gel was stained with EtBr. To confirm which digested fragment was the 

linearized cp32, the gel was blotted and hybridized with probe 4 as described above.

Characterizing the permutation of DNA. Phage D N A  was extracted

from the cell-free supernatants o f MNNG-treated CA-11.2A cells as described above. A 

small aliquot of DNA was tested to assay susceptibility to restriction digestion (we 

suggest this as a routine step, because there is batch-to-batch variation between 

preparations, based on the effectiveness of PEG removal). Ten pi o f  susceptible phage 

DNA was digested with //mdHI as instructed by manufacturer. The D N A  was then 

subjected to FIGE using program 2 as described above, but a 25-cm gel was used and the
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electrophoresis time was extended to 26 h. The gel was stained with EtBr and 

visualized as described above. After visualization, the gel was vacuum-blotted to 

H y b o n d - N + as described above.

An additional 10 pi of phage DNA from the same preparation was treated with 

calf-intestinal alkaline phosphatase (CIP) (New England Biolabs) as instructed by the 

manufacturer. The CIP was inactivated at 75°C for 10 min in the presence o f 5 mM 

EDTA, then extracted with phenolxhloroform and precipitated with EtOH. The DNA 

pellet was resuspended in 10 pi water and then end-labeled with [y^Pj-dATP using T4 

polynucleotide kinase (New England Biolabs) as instructed by the manufacturer. The 

probe was purified by passage through a G-50 spin column. The end-labeled phage DNA  

was then subjected to digestion with ffrwiln for 4 h at 37°C.

Southern hybridization of the blot of the //mdlll-digested DNA was performed as 

described above using the end-labeled, digested phage DNA probe. After the final 

stringency wash, the film was wrapped in cellophane and exposed to Fujifilm RX film for 

7 to 10 days at -80°C with intensifying screens.

2.4 Chapter 5 methods

Cesium chloride purification of phage. Phage particles were precipitated from 

cell-free supernatants as described above. Cesium chloride (CsCl)-gradients were 

prepared in 2.2 ml polyallomer tubes (Beckman). Three hundred pi of 1.7 g ml'1 CsCl,

400 pi o f 1.5 g ml*1 CsCl, and 200 pi o f 1.3 g ml*1 CsCl were carefully layered 

successively into the centrifuge tubes and the remaining volume (-1.3 ml) was filled with 

precipitated sample. The gradients were centrifuged at 104,000 x g  in a TL100
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ultracentrifuge for 4  h at 4°C using a swinging bucket rotor (TLS55). Fractions from 

the gradient were collected successively from the top of the centrifuge tubes in 400 jj.1 

aliquots. Fraction five, containing intact <|>BB-1 particles, was saved and pooled from 

multiple gradients. The fractions were dialyzed against 0.5 to 1 L SM using a 

microdialyzer (Gibco-BRL; Rockville, MD) and dialysis membrane with a molecular 

weight cut-off o f 12-14 kDa (Gibco-BRL). Two hundred jxl of the dialyzed sample was 

saved and the rest o f the sample was applied to another CsC 1-gradient. This was repeated 

a third time. Five p.1 o f each dialyzed sample and an undialyzed sample o f the original 

PEG-precipitated material was resolved by SDS-PAGE on 12.5% polyacrylamide gels as 

described above.

Phage DNA was extracted from 50 ill o f each sample and resolved on 0.5% 

agarose gels at 50 V (4 V cm'1) for 3 h by conventional gel electrophoresis and stained 

with EtBr as described above. A drop of the phage-containing fraction from the third 

gradient was stained with 1% PTA and analyzed by TEM as described above.

In preparation for N-terminal sequencing, proteins were resolved by SDS-PAGE 

as described above. After electrophoresis, the gels were transferred to Immobilon-P as 

described above in the Western blotting protocol. After the transfer, the membrane was 

stained in CBB (prepared for this purpose; 0.25% CBB-R in 50% methanol), destained in 

50% methanol and air-dried. The band of interest was excised and stored at -20°C until 

submission for sequencing.

Preparation and analysis of a low protein medium. For the low protein 

medium, a basal solution was made containing 8% (v/v) 10X CMRL-1066 (without L-
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glutamine and sodium bicarbonate; Gibco-BRL), 4 g L'1 Neopeptone (Difco), 1.6 g L'1 

Yeastolate (TC; Difco), 6 g L'1 N-2-hydroxyethylpiperazine-Ar-2-ethanesulfonic acid 

(HEPES), 4 g L'1 glucose, 0.56 g L'1 sodium citrate, 0.64 g L’1 sodium pyruvate, 0.32 g 

L"1 //-acetylglucosamine, 1.76 g L 1 sodium bicarbonate and 5 ml L'1 glycerol (adjust to 

pH 7.6 with 1 N  NaOH, adjust volume with water and sterilize by filtration through a 

0.22-p.m filter) (14, 36, 136). For the serum requirement experiment, 40 g L"1 bovine 

serum albumin (BSA; fraction V, Pentax; Miles) was added prior to sterilization. Rabbit 

serum (trace hemolyzed; Pel-Freez Biologicals) was added to smaller aliquots of the 

basal medium in the required percentage (0 to 8% over nine 10 ml aliquots) and the 

medium was filtered again through a 0.22-pm filter. To determine the BSA requirement, 

the basal medium was made with 3% rabbit serum, filtered, and split into smaller 

samples. BSA was added in the appropriate amount (ranging from 0 to 40 g L 1 over 

eight 10 ml aliquots) and the solution was filtered again. To assess the ability of CA- 

11.2A cultures to produce $BB-1, cultures were treated with MNNG as described above. 

After treatment, cells were pelleted and resuspended in the samples o f low-protein 

medium formulated as described. After recovery, the supernatants were collected, the 

phage was precipitated, and the DNA extracted as described above.

The final low protein medium (BSK-chel) used for the analysis of possible phage 

proteins is the basal medium described above with no exogenous BSA added and 3% 

rabbit serum. CA-11.2A cultures were treated with MNNG as described above, the cells 

washed once in BSK-chel and resuspended finally in a volume o f  BSK-chel equal to that 

of the original culture. After the recovery period, samples of <J>BB-1 were precipitated
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from BSK-chel as described above. After PEG-precipitation, 6 pi o f  4X SDS- PAGE 

loading dye was added to 18 pi of either the precipitated phage sample or the BSK-chel 

control. Proteins were resolved on 12.5% polycrylamide gels by SDS-PAGE as 

described above. Proteins were prepared for N-terminal sequencing as described above.

Protein extracts for BlyA and BlyB analysis. 200 ml cultures o f B. burgdorferi 

B31, CA-11 and CA-11.2A were grown to log phase, then split into two equal aliquots. 

One of the aliquots was treated with 10 pg ml'1 MNNG as described above, with the 

untreated control treated in the same manner without chemical induction. After the 

appropriate recovery time (~60 h), 10 ml aliquots were collected from each sample for 

protein extracts. The cells were pelleted at 8,000 x g for 10 min at 4°C, washed in 1 ml 

dPBS** (dPBS containing 0.1 g L'1 CaCh, 0.213 g L'1 MgCl2«6 H2O), pelleted again at

14,000 x  g  for 5 min at 4°C in a microfuge, and finally resuspended in 1 ml of dPBS+H\  

The density of the cells by A600 was determined and the cells were centrifuged at 14,000 

x  g  as above, and resuspended in an amount of water in pi equal to the determined A6oo 

multiplied by 200. An equal volume of 2X SDS-PAGE loading dye was then added and 

the sample was boiled for 5 min. As a control, MM294 cells (E. coli) containing a 

plasmid (pTG3) that expresses blyA and blyB (75) were grown in 50 pg ml'1 carbenicillin 

overnight. Whole cell lysates were extracted from these cells as described for the B. 

burgdorferi cells.

Lysates were resolved on 17.5% polyacrylamide by SDS-PAGE (prepared as for a 

12.5% gel, except with 17.5% polyacrylamide) as described above. Five pi o f each 

protein extract (B31 -M NNG/ +MNNG, CA-11 -/+, CA-11.2A -/+ and MM294 control)
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were loaded onto each of four gels, so that the gels were identical to each other. The 

electrophoresis time was extended until approximately 30 to 45 minutes after the dye 

front had migrated o ff the bottom of the gel. After electrophoresis, one gel was stained 

with CBB and destained as described above. The other gels were blotted to Immobilon- 

P as described above. The membranes were probed with the following primary 

antibodies, each diluted 1:5000 from stock: BlyA, BlyB (stock IgG antibodies generated 

from rabbits and provided by Damman and Oliver) or OspC [stock IgG antibody 

generated from a rabbit and provided by Tom Schwan (149)].

BlyA and BlyB localization. A 100-ml culture of log phase CA-11.2A cells was 

treated with MNNG as described above. After recovery, the cells were pelleted at 6,000 

x g at 4°C for 10 min. The cell pellet was resuspended in 2 ml of ice-cold TBSP (20 mM 

Tris-HCl [pH 7.4], 150 mM NaCl, 5 mM EDTA, 1 mM PMSF) and pelleted again at

14.000 x  g  for 10 min at 4°C. The pellet was resuspended in 2 ml of TBSP and then 

sonicated (8 cycles o f  30 s at 3.5, 1 min recovery on ice). Cell lysis was evaluated by 

dark-field microscopy at 100X magnification. Unlysed cells were removed by 

centrifugation at 6,000 x  g  for 10 min at 4°C. The cell extracts were centrifuged at

100.000 x  g  for 3 h at 4°C in a TL100 (TLA100.2 rotor, polycarbonate tubes). This 

centrifugation gave rise to a supernatant fraction (S100) and a pellet fraction (P100). The 

P100 was resuspended in a volume of TBSP equivalent to the S100 fraction. For SDS- 

PAGE analysis, 2x SDS-PAGE loading dye was added to each fraction and the sample 

was boiled for 5 min. The protein samples were resolved on 17.5% polyacrylamide gels
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as described above. Matched gels were blotted to Immobilon-P for Western blotting 

with the BlyA and BlyB antibodies as described above.

RNA extraction. 100 ml cultures o f B31 and CA-11.2A were prepared as 

described for protein extraction above. The cultures were centrifuged at 6,000 x g  for 10 

min and the supernatants collected for PEG-precipitation as described above. All 

subsequent steps were performed with sterile-filter tips, autoclaved glassware and 

solutions used only for RNA experiments and prepared with diethyl pyrocarbonate 

(DEPC)-treated water (100 pi DEPC in 1 L o f water, let stand overnight, then autoclave).

RNA extraction was done using the Trizol reagent (Sigma) as described by the 

manufacturer. The cell pellets were resuspended completely in 10 ml Trizol and 

incubated at room temperature for 5 min. After 5 min, 2 ml of CHCI3 was added, the 

sample mixed vigorously and incubated at room temperature for 3 min. The sample was 

then centrifuged at 12,000 x g  for 15 min at 4°C. The aqueous phase was recovered and 

5 ml of isopropanol was added to the sample, mixed and then incubated at room 

temperature for 10 min. The RNA was pelleted at 12,000 x g  for 10 min at 4°C. The 

RNA pellet was resuspended in 10 ml of 75% EtOH and centrifuged again at 7,500 

for 5 min at 4°C. The RNA pellet was air dried for 10 to 15 min and then resuspended in 

50 to 100 pi of DEPC-treated water. The sample was incubated at 55 to 60°C for 10 min. 

The optical density at A260 was determined and multiplied by a factor of 40 pg ml'1 and 

the dilution factor to determine concentration. The RNA was stored at -80°C.

Northern Analysis of blyAB RNA. For resolution of RNA to be probed, a 150 

ml 1.2% gel was poured. 1.8 g GTG agarose was dissolved in 130.5 ml of DEPC-treated
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water, cooled to 65°C, and 15 ml of 10X MOPS running buffer (0.4 M 3-[N- 

Morpholino]propane-sulfonic acid [MOPS], 0.1 M sodium acetate, 0.01 M EDTA, in 

DEPC-water; autoclave to sterilize) and 4.5 ml formaldehyde was added prior to casting 

the gel in a 15 x  15 cm tray. Ten to 15 fig of RNA were resolved for each sample (B31 

-/+, CA-11 -/+, CA-11.2A -/+)• The RNA was mixed in 50% formamide, IX MOPS,

16% formaldehyde, and DEPC-water (total volume -3 0  pi). After mixing, the sample 

was heated for 10 min at 55°C and IX formaldehyde loading buffer (6X formaldehyde 

loading buffer: 1 mM EDTA, pH 8.0, 0.25% [w/v] BPB, 0.25% [w/v] xylene cyanol,

50% [v/v] glycerol) and 0.02 pg pi'1 EtBr was added. Samples were loaded onto the gel 

so that each half of the gel was identical to the other.

The RNA was resolved at 70 V (3.7 V cm*1) for 3 to 4  h (until the dye front had 

migrated three-fourths the length of the gel). After electrophoresis, the gel was washed in 

two changes of DEPC-water for 10 min. Vacuum blotting o f the gel was performed 

under 50 mbar of pressure. The gel was blotted to Immobilon-Ny+ using DEPC-water for 

10 min, denaturing solution (50 mM NaOH, 1.5 M NaCl) for 10 min, neutralization 

solution (0.5 M Tris-HCl [pH 7.4], 1.5 M NaCl) for 10 min followed by 20X SSC for 3 h 

(all solutions made in DEPC-water). The membrane was cross-linked using a UV  

Stratalinker 1800 (Stratagene) as described above and air-dried on clean 3MM filter 

paper.

For Northern hybridization, the membrane was cut in half and both halves were 

rehydrated in 6X SSC (in DEPC-water). Before addition o f either the blyA or blyB  probe, 

the membranes were prehybridized for 15 to 20 min at 42°C in 20 ml of 5X SSC, 1%
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SDS, 5X Denhardt’s, 50% formamide with 1 mg of sheared salmon sperm DNA (DNA 

is denatured and cooled prior to addition). The probes for Northern hybridization were 

generated as for Southern hybridization (see above) using the Prime-it II labeling kit 

(Stratagene) as per the manufacturer’s instructions. The probes labeled were fragments 

of DNA generated by PCR (as described for probe 4 above) with either the blyA or blyB 

primers (Table 1). The probes were boiled, chilled, and added to the prehybridized 

membrane and hybridization was performed overnight at 42°C.

After hybridization, the membranes were washed twice with 2X SSC-0.1% SDS 

at room temperature for 10 min each. This was followed by a high stringency wash of 

0.2X SSC-0.1%SDS at 42°C for 1 h. The membranes were then wrapped in cellophane 

and exposed to Fujiftlm RX film in a cassette with an intensifying screen as described for 

Southern hybridization above.

2.5 Chapter 6 methods

Construction of pCE210. We constructed a plasmid for the insertion of the 

kanamycin-resistance cassette into prophage DNA. f/indHI-digested <j)BB-l DNA was 

ligated into the pBluescript IISK+ vector as described in the methods for chapter 3. This 

generated plasmids that contained phage DNA fragments o f various sizes less than 4  kb. 

Three o f the largest clones, SK6 , SK12, and SK I9 were found to be virtually identical 

when -4 0 0  base pairs o f one end o f each fragment was sequenced. All had inserts that 

were -3 .5  kb. For continued analysis, the plasmid containing SK12 was selected and 

renamed pCElOO.
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The SK I2 phage DNA insert was amplified from pCElOO using the SK/KS 

primer pair as described in the chapter 3 methods. With the amplified insert as a 

template, a survey of several different restriction enzymes revealed that Ndel cut the 

phage insert once, leaving two bands of -  1.1 kb and -2 .4  kb, sizes suitable for 

homologous recombination into a locus of prophage DNA in B. burgdorferi cells.

pTAKanG, the plasmid containing the kanamycin-resistance-cassette (kanR), was 

obtained from Jim Bono (Rocky Mountain Labs, Hamilton, MT). This plasmid encodes a 

fusion of the B. burgdorferi flgB  promotor and the kanR from pOK12, which was 

performed by ligation of Ndel overhangs (28). To insert the kanamycin-cassette into the 

Ndel site of the phage insert, pCElOO was linearized by digestion with Ndel according to 

the manufacturer’s instructions. The plasmid containing the flgB  promoter/fom* fusion 

was digested with EcoRI. EcoBl sites flank the insertion site in the multiple-cloning site 

of the pCR®2.1 vector that is the backbone of pTAKanG. The digested kanamycin- 

resistance cassette was resolved on a 0.8% agarose gel as described above and the -1.3 

kb band was gel purified using the QIAEX gel extraction kit (Qiagen) as instructed by the 

manufacturer. Both the linearized pCElOO and the purified kanR were treated with Mung 

Bean nuclease (MBN; New England Biolabs) to blunt the ends of the DNA as instructed 

by the manufacturer.

After M BN treatment, the enzyme was inactivated by adding SDS to a final 

concentration o f 0.01%, followed by an EtOH-precipitation as recommended by the 

manufacturer. The vector and insert were ligated together using T4 DNA ligase. After an 

overnight ligation at 25°C, the product was transformed into chemically competent cells.
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One hundred pi aliquots were plated on LB plates containing 50 pg ml'1 kanamycin 

(LB agar 10 g Tryptone B, 5 g yeast extract, 10 g sodium chloride and 15 g Bactoagar 

[Difco] per liter; the solution was autoclaved, cooled to 65°C, 1 ml of a 50 mg m l1 

kanamycin stock solution was added and -3 0  ml of the agar was poured into each 100 

mm petri dish). The competent cells were prepared using a CaCh-solution essentially as 

described elsewhere (10, 76). The plates were incubated at 37°C for 12-14 h. Colonies 

were screened using the SK/KS primer pair (—5-kb fragment), followed by PCR with a 

combination of one of the SK/KS primers and one of the cp32SK12MfeI primer pair 

(junctional PCR) to check the orientation of the insertion. The product of PCR from 

pCElOO with the SK/KS primers was used as a negative control. One of the clones that 

contained the kanR cassette was selected and designated pCE210.

Generating fczn*-transformants of B. burgdorferi CA-11.2A. pCE210 was 

digested with RsjHII, cutting the insert out o f the plasmid that contains ampicillen- 

resistance. The DNA was resolved on a 0.5% agarose gel and the insert containing the 

<{>BB-1 DNA/fam^-cassette hybrid was extracted with the QIAEX gel extraction kit. Ten 

pi of the purified insert DNA (-2  pg) was electroporated into competent B. burgdorferi 

CA-11.2A cells. The preparation of B. burgdorferi competent cells, the transformation 

protocol, and the plating in solid medium were performed as described previously (136). 

Transformants were selected in 500 pg ml'1 kanamycin. The plates were incubated at 

34°C for 7 to 10 days until colonies were visible.

Colonies were screened by PCR (92°C 30 s, 44°C 30 s, 72°C 1 min) using the 

cp32SKMM primers that flank the insertion site. PCR products were resolved on 1%
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agarose gels and stained with GelStar nucleic acid stain. Clones containing the -1.2-kb

n

kan -insertion were picked using a Pasteur pipette and inoculated into 10 ml of BSK- 

complete supplemented with 500 pg ml'1 kanamycin.

Analysis of transformants. CA-11.2PJkanR transformants were cultured until 

log phase. Aliquots were removed from each sample and stored in 20% glycerol at 

-80°C. The remaining cultures were centrifuged at 8,000 x  g  for 10 min at 4°C to pellet 

the cells. The supernatant was removed and phage particles PEG-precipitated as 

described above. The cell pellets were washed once in dPBS, pelleted in a microfuge at

14,000 x  g  for 5 min and finally resuspended in 100 pi TES. SDS and PK were added 

and the DNA was extracted as described above.

Chromosomal DNA was resolved by two-dimensional electrophoresis as 

described above. The gel was stained, destained and vacuum blotted to Immobilon-Ny+ 

as described above. Southern hybridization was performed using either the cp32-specific 

probe 4 prepared by PCR, or pOK12 that was extracted from E. coli cultures using 

Wizard Midipreps Plus. Probes were labeled using the Prime-it II kit. Phage DNA 

extracted from the transformants’ supernatants was also resolved by FIGE, blotted and 

probed with probe 4 and pOK12 as described above.

Transduction of an antibiotic-resistance marker. To assess the transduction of 

the kanR-marker by <j>BB-l released from the B. burgdorferi C A -11.2fidkanR 

transformant, we purified phage particles from a 100-ml culture o f late log phase MNNG- 

treated cells. The titer of the final sample was approximately 1011 phage ml'1 of the final 

resuspension in SM, as assayed by DNA concentration and calculated as described above.
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For transduction, <j>BB- l/fa j/(C A -11.2A) samples were taken from the stock 

and treated with 10% CHCI3 to eliminate possible contamination, incubated at room 

temperature for IS min, then centrifuged at 14,000 x  g and the aqueous phase recovered. 

Sterile 1 M MgCh was added to the sample to bring the final Mg2+ concentration to 16 

mM and 1 pi RQ1 DNase was added per 250 pi of volume. After 0.5 h at 37°C, 100 pi 

(~1010 phage) of the prepared phage sample was mixed with 107 cells (1000:1) and BSK 

complete was added for a final volume of 1 ml. As controls, a sample of phage 

preparation was incubated in 1 ml without cells, and a sample of 107 cells was incubated 

in 1 ml without phage. A sample of the $BB-UkanR (CA-11.2A) was also incubated with 

PK prior to addition to the cells, as another negative control.

The samples were incubated at 34°C overnight. After ~16 h of incubation, the 

phage/cell mixtures were plated in solid medium and selected with 500 pg ml'1 

kanamycin as described elsewhere (136). Colonies were picked and screened by PCR 

with the cp32SKM/eIF and KanRl207F primers using the parameters as for the 

cp32SKMM primer pair. Positive clones were picked into 10 ml of BSK-complete with 

500 pg ml'1 kanamycin.

When the putative transductants reached late log phase, aliquots were removed 

and frozen in 20% glycerol at —80°C. DNA was extracted from the remainder o f the 

culture and the clones were screened again by PCR for the fazn^-cassette using the above 

primers as well as the flanking cp32SKMfeIF and cp32SKMMR primers (PCR was 

performed as above; 25 cycles of 92°C 30 s, 44°C 30 s, 72°C 1 min). Transduction 

assays for other strains were done essentially as described above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39
To evaluate the ability o f DNA to transfer between dead kanR-\xansformed cells 

and live cells, mimicking the phenotype produced by transduction, 108 C A -11.2A/kanR 

cells were treated with 50% chloroform, followed by two treatments with 10% 

chloroform to duplicate the organic conditions under which §&B-llkanR (CA-11.2A) was 

purified. The aqueous phases from these treatments were recovered, treated with DNase, 

and incubated with 106 live CA-11.2A cells. As a control, a sample of the dead CA- 

11.2AfkanR cells prepared as described was also treated with PK prior to mixing with the
D

live cells. A sample of dead CA-1 l.2AJkan cells prepared as above were also plated in 

the absence of selection to assess viability.

Analyzing the transductant variable regions. Amplification of the variable 

regions of the parental and transduced strains was done as described in the chapter 4 

methods. DNA was resolved on a 0.8% agarose gel was done by FIGE as described for 

VR1 above, except a time of 30 h was used. The gel was stained with EtBr and the 

image captured on the Gel Doc 1000 system. Sizes of the variable regions were 

determined using the Multi-Analyst software.

For cloning, amplified variable regions from DNA of both the parental and 

transductant cells were resolved by FIGE on a 0.8% agarose gel as described above, 

except the gel was electrophoresed for 36 h. After visualization by EtBr-staining, the 

bands of interest were extracted from the 0.5X TBE gel using the QIAEX gel extraction 

kit.

After gel extraction, 13.4 fil of the DNA were mixed with 1 |xl of Taq polymerase 

(5 U), 2 pi 10X Taq PCR buffer, 3.2 pi 25 mM MgCl2, and 0.4 pi 10 mM dATP. The
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DNA was polyadenylated at 72°C for 0.5 h. The tailed DNA was cloned into the 

pCR®2.1-TOPO vector in TOP10F' cells using the TOPO TA Cloning® kit (Invitrogen; 

Carlsbad, CA) as instructed by the manufacturer. The colonies were screened for the loss 

of (3-galactosidase activity as described above and possible positive (white) colonies were 

selected. These colonies were screened using the cp32VRl primers.

Analysis of recombinants. Plasmid DNA was extracted from log phase cultures 

of CA-11.2A, CA-11.2 A/fazn*, CA-11.2ATR3, B31, B31 TR1, 1A7 and 1A7 TR5 using 

the Wizard Plus Midi preps. CA-11.2A TR3, B31 TR1, and 1A7 TR5 are the 

kanamycin-resistant strains generated by transducing the foz/i*-cassette into the parental 

strains CA-11.2A, B31 and 1A7 with <)>BB-l/ifcanR(CA-11.2A). The concentration of 

DNA was determined by measuring the absorbance at 260 nm. 500 ng of DNA was 

digested with either EcoRV  or Xbal. The DNA was resolved on a 0.8% agarose gel by 

FIGE as described for the mapping gels in chapter 4. The gels were electrophoresed for 

14 h.

The gels were stained with EtBr as described, then destained, documented, and 

vacuum-blotted as described above. The blots were probed with the cp32SKM/eI PCR 

product (amplified from total CA-11.2A DNA as described above and amplified a second 

time using 1 |il of the first PCR as the template) as described above. After exposure to 

film, the blots were stripped and then probed with pOK12, the source of the kartR-gcne.
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Table 1. Oligonucleotides used in this study.
Name Template Sequence (5-30
CP-4 (probe 4)
CP-5 (probe 4) 
cp32SK12M/eIF (N) 
cp32SK12MfeIR (N) 
cp32-VRlF (V) 
cp32-VRlR (V) 
ERP-177 (probe 2) 
ERP-178 (probe 2) 
KanR1207F 
ospC IF 
ospC 300R 
rev7 (JblyA probe) 
rev08 (JblyA probe) 
rev8 (blyB probe: B) 
rev06 (blyB probe: B)

cp32 DNA  
cp32 DNA  
cp32 DNA  
cp32 DNA  
cp32 DNA  
cp32 DNA  
cp32 DNA  
cp32 DNA  
kanR-cassette 
cp26 
cp26
cp32 DNA  
cp32 DNA 
cp32 DNA  
cp32 DNA

AATACGTTGATCATGCGAAATGAC 
TT ACTTTCT ACC AT ATGGGCTTGCC 
ACTTTGTTGTAGTG ATT ATTTGTTC 
GGGGAAAGAATTGTTGAAG 
A A AT AAAACTT AGG AGTT GGTTTTG A A  
TAACTTTCCTAGCGTT AACTTCTG AT 
G A AAAGCCC ATT AAAG AT AGGTTG 
AAGT AAC AACCCC ATTTTTGT ATCTCC 
ATT ACGCTG ACTTG ACGGG 
AGACTAATAAAATAATAAGAATA 
GT ATTTTG ACTC A A A ACTTT A 
C AG A ACTTCTT ATC A AT 
GCCATTACCATTGCC 
CCAAAGATAATGTTG 
GATCTATGTTTGT ATC

designations in parentheses are the nam es used for the probes generated from those prim ers (refer to text)
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Chapter 3

Identification o f a new phage of Borrelia burgdorferi

[adapted from Eggers and Samuels, 1999 (63)]

We recovered extracellular nucleic acid from cultures of a California strain of B. 

burgdorferi. This nucleic acid had properties characteristic o f a genome packaged within 

a bacteriophage capsid. Consistent with this hypothesis, electron micrographs of 

supernatant material containing the extracellular nucleic acid exhibited characteristic 

bacteriophage-like particles. We report here the physical properties of the packaged 

nucleic acid, the structural features of the bacteriophage capsid, and the induction of a 

previously unreported lysogenic prophage. Based upon our molecular characterization 

we have named this bacteriophage $BB-1.

Isolation of extracellular DNA. Nucleic acid was recovered from PEG- 

precipitated cell-free supernatants o f late log phase cultures o f B. burgdorferi strain CA- 

11.2A (Figure 2). This nucleic acid was protected from DNase through two chloroform 

treatments (Figure 2, lane 1). When precipitated samples containing the nucleic acid 

were first treated with PK and SDS, and extracted with organic solvents prior to DNase 

addition, the nucleic acid became sensitive to DNase digestion (Figure 2, lane 2). This 

protein-mediated nuclease protection would be expected of a bacteriophage capsid. The 

extracellular nucleic acid is resistant to RNase (data not shown). The nucleic acid 

migrates as an approximately 32-kb molecule when resolved by either field inversion 

(Figure 2, lane 1; black arrow) or conventional (Figure 3, lane 1) gel electrophoresis. 

Circular molecules migrate differently under these two conditions. During conventional 

field gel electrophoresis, supercoiled circular molecules migrate faster than linear

42
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Figure 2. Protein-mediated protection of extracellular nucleic acid from DNase. Cell- 

free supernatants of B. burgdorferi strain CA-11.2A cultures were PEG-precipitated and 

treated twice with chloroform. Samples of these precipitates were subjected to digestion 

with DNase I prior to DNA extraction (lanes 1 and 2). The proteins were then degraded 

by adding SDS and PK (lane 1 and 2). The DNA was extracted with organic solvents, 

precipitated and either loaded directly onto a 0 .8% agarose gel (lane 1) or subjected to 

another digestion with DNase I and then loaded onto the agarose gel (lane 2). The DNA  

was resolved by FIGE and visualized by EtBr-staining. The arrow indicates the ~32-kb 

linear double-stranded DNA. Molecular sizes are in kilobase pairs.

equivalents, but the migration of these circular molecules is retarded when subjected to 

field inversion electrophoresis (80, 155). Because of the similarity of the electrophoretic 

mobility under these two conditions, the resistance to RNase-digestion and the 

conditional susceptibility to DNase, we have concluded that the extracellular nucleic acid 

is a double-stranded, linear DNA molecule. In addition, when observed by electron
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Figure 3. Denaturation of extracellular phage DNA. DNA denatured with 0.2 M NaOH

(+) and an untreated control (-) were resolved on a 0.5% agarose gel by conventional 

field electrophoresis. The arrow indicates single-stranded DNA products generated by the 

denaturation of non-covalently closed double-stranded phage DNA (lane 2). The control 

molecule, Ip 17, contains covalently closed ends and reanneals to regenerate a double

stranded DNA molecule (lane 4). The gel was stained with EtBr. Molecular sizes are in 

kilobase pairs.

microscopy, the nucleic acid appears to be a double-stranded, linear ~32-kb DNA 

molecule with no gross secondary structure (102). We have proposed that this DNA is 

the genome of a temperate bacteriophage o f B. burgdorferi.

All of the linear DNA molecules o f B. burgdorferi have covalently closed ends 

(Figure 1) (18,41, 68, 81, 83, 84). To characterize the ends of the linear bacteriophage 

DNA, a sample was denatured with NaOH, producing single-stranded products (Figure
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3, lane 2). When DNA lacks covalently closed ends, the single stranded molecules 

generated during denaturation cannot “snap back” and regenerate a double-stranded DNA  

molecule (Figure 3, lane 2; black arrow). As a control, the small linear plasmid o f the B. 

burgdorferi genome, lpl7, was exposed to the same conditions (Figure 3, lane 4). Ipl7 

has covalently closed ends (18, 84) and reannealing occurred rapidly during a brief 

recovery period after denaturation (Figure 3, lane 4). The DNase-protected phage DNA  

did not rapidly reanneal, indicating both the double-stranded nature o f the molecule and 

the lack of covalently closed ends.

Visualization of bacteriophage particles. Phage ultrastructure was examined by 

TEM (Figure 4). The phage heads appeared isometric with a diameter of 46 ± 1.4 nm. 

The contractile tails were approximately 92 ±  4 nm x  10 ± 0.9 nm. In the PEG- 

precipitated preparation (Figure 4A), both empty (darkly stained) and intact heads (lightly 

stained) were observed. A large percentage of the observed particles were no longer 

intact. The empty heads could be due to inefficient packaging into the procapsid or this 

phenomenon may be an artifact of purification and staining. After further purification on 

CsCl gradients, preparations that contain only full heads were recovered (data not 

shown). However, the extra purification step sharply decreases the yield of phage DNA  

recovered per ml of original supernatant. The contractile tail was observed in both the 

extended and contracted conformation (Figure 4B). The bacteriophage we report here 

has not yet been seen in association with B. burgdorferi cells. We have designated this 

bacteriophage <{>BB-1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Figure 4. B. burgdorferi phage particles. Samples were collected from PEG-precipitated 

cell-free supernatants of an induced culture of B. burgdorferi CA-11.2A and viewed by 

TEM. (A) Both tailless and complete phage particles were visible, including intact heads. 

Phosphotungstic acid stain; magnification, xl75,000 (bar =115  nm). (B) High 

magnification of the intact phage particles. The contractile tail is either extended (left) or 

contracted (right). Phosphotungstic acid stain; magnification, x270,000 (bar = 45 nm).

The lysogenic prophage. To identify the genomic location of the 0BB-1 

prophage within the B. burgdorferi genome, total cellular B. burgdorferi C A -11.2A DNA 

was resolved by two-dimensional agarose gel electrophoresis (Figure 5, left). The DNA 

was electrophoresed in the presence of chloroquine, a DNA intercalater, in the second 

dimension. This is an effective technique for differentiating between the circular and 

linear elements o f the B. burgdorferi genome. Chloroquine introduces positive writhe,
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(Native)
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(+15 fiM  chloroquine)

Figure 5. Genomic location of the <|>BB-1 prophage. Total cellular DNA from B. 

burgdorferi CA-11.2A was resolved by two-dimensional gel electrophoresis (left panel). 

The large circular plasmid (white arrow) was retarded in its migration in the second 

dimension, while the migration of the linear DNA elements was unaffected. A Southern 

blot of the gel (right panel) was probed with total phage DNA that was extracted and 

radiolabeled. The phage DNA hybridized to the circular 32-kb plasmid (black arrow). 

Additionally, the phage DNA hybridized to the nicked (gray arrow) and linearized 

(hatched arrow) forms of cp32. The location o f cp26 is indicated by the speckled arrow. 

Molecular sizes are in kilobase pairs.

relaxing negatively supercoiled circular DNA molecules (138) and retarding the 

migration of these molecules in the second dimension (Figure 5, white and speckled 

arrows). The migration of linear DNA molecules is unaffected by the presence of 

chloroquine.
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Total phage DNA was hybridized to a blot o f the two-dimensional gel (Figure 

5, right panel). The phage DNA hybridized with the supercoiled circular (Figure 5, black 

arrow), linearized (Figure 5, hatched arrow) and nicked forms (Figure 5, gray arrow) of 

the cp32. The hybridization to the nicked D NA (Figure 5, gray arrow) may also mask or 

include hybridization to Ip56, which has sequence homology to the cp32s and co- 

migrates with the nicked DNA under these conditions.

The pattern of hybridization of a small probe specific to the 26-kb circular 

plasmid, cp26 (Figure S, speckled arrow), was used to differentiate these large circular 

plasmids and to determine that this similarly-sized molecule was not packaged within the 

phage capsid (data not shown).

In addition to the hybridization of total phage DNA to cp32, several different 

cp32-specific probes hybridize to total phage DNA (see Figure 11). No DNA other than 

cp32 DNA has been found within the <{>BB-1 capsid by either hybridization or PCR 

amplification.

Several fragments generated by //mdlEI-digestion of genomic <J>BB-1 DNA from 

B. burgdorferi CA-11.2A have been partially sequenced. The sequences from these 

fragments were analyzed by BLAST search for sequence similarity (114, 176). When 

compared to the known B. burgdorferi B31 cp32 sequences, all of the cloned fragments 

from the CA-11.2A 0BB-1 genome had >85% sequence identity to at least one B. 

burgdorferi B31 cp32 (Table 2). Using the known B31 cp32 sequences, we have also 

identified the approximate location of the sequenced end of each CA-11.2A <j>BB-l 

fragment (Table 3). Fragments 7, 8, and 9 each have homology to several different cp32s
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and map to a highly conserved region. Fragments 6, 12, 14, 23, and 25 are homologous 

to the more variable regions o f the cp32s, and accordingly, each share sequence similarity 

with fewer cp32s (42, 176) (see Figure 28 and discussion).

Table 2. Sequence identity between CA-11.2A phage DNA fragments and the B31
cp32s.

<}>BB-1
fragment

cp32-l cp32-3 cp32-4 cp32-6 cp32-7 cp32-8 cp32-9

6-SK 63.3% 91.4% <54%* <54% 63.3% 61.7% <54%
7-SK 99.1% 99.1% 86.1% 89.6% 99.1% 99.1% 87.5%
8-SK 98.7% 98.6% 87.8% 92.9% 98.7% 98.7% 89.9%
9-SK 94.8% 94.8% 94.4% 94.6% 93.9% 94.8% 94.8%
12-SK 65.2% 89.1% 54.9% 60.8% 63.4% 63.2% <53.1 %
14-SK 90.5% 64.1% 89.3% 89.5% 90.3% 86.8% 70%
23-SK 66.0% 76.1% 85.6% 84.6% 70.6% 65.6% 84.9 %
25-SK <55.1% <55.1% 65.1% 98.1% <55.1% <55.1% <55.1 %
Sequence identity o f  the C A -11.2A  phage D N A  fragments to the B31 cp32s reported  as <X %  are not

w ithin the top 20 reported scores fo r which percentages are given, but are w ithin the to p  50  best scores

Table 3. Approximate location o f sequenced CA.11-2A <j>BB-l fragments on the cp32
molecule

<j)BB-l fragment 
(size)

B 3 1 plasmid with highest 
sequence identity

Approximate location 
on cp32*

6-SK (3.5 kb) 32-3 -22000
7-SK (1.5 kb) 32-1,3,7,8 -1 8 0 0
8-SK (1.7 kb) 32-1,7,8 -1 5 0 0
9-SK (2 kb) 32-1,3,8,9 -6 0 0 0
12-SK (3.5 kb) 32-3 -2 1800
14-SK (2 kb) 32-1 -22600
23-SK (400 bp) 32-4 -2 2200
25-SK (800 bp) 32-6 -2 7000
1 approxim ate map location was determ ined  by com paring ~400-bp o f  sequence from  C A -1 1.2A  <j>BB-l to 

the know n B 31 cp32s (42)
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Induction of the lysogenic $BB-1 prophage. Quantifying the phage titer 

released from B. burgdorferi cultures is technically difficult. B. burgdorferi cells can be 

grown in solid medium, but they do not readily form a lawn (unpublished observations), 

and plaque assays are not feasible. The most efficient way o f  detecting the presence and 

amount of phage in a sample is by determining the concentration of the extracted 

extracellular DNA from cell-free supernatants. The concentration of the DNA can be 

evaluated by agarose gel electrophoresis or by the optical density at 260 nm. By these 

methods, the upper limit of the number of full phage heads in an uninduced culture can 

be determined as approximately 106 phage ml'1 of original culture. This is at the lower 

limit of detection by EtBr-staining o f an agarose gel or visualization by electron 

microscopy. Unfortunately, this method does not assess the number of infective <j>BB-l 

particles in a sample. The assessment of the total number of infective particles is 

currently beyond the scope of the experimental system.

Both mitomycin C and ciprofloxacin had been used previously to induce 

prophages from spirochetes (33, 87, 110, 117), but neither o f these chemicals nor UV 

light consistently induced the <|>BB-1 prophage from B. burgdorferi CA-11.2A. We have 

seen isolated incidents o f increased <{>BB-1 release from mitomycin C-treated cells, but 

this method does not reliably generate higher phage titer.

Preliminary evidence suggested that the lysogenic <{>BB-1 prophage of B. 

burgdorferi CA-11.2A was consistently inducible with MNNG. The concentration of 

MNNG required for induction was evaluated over a range from 0 to 50 pg ml"1, with 10 

pg ml*1 producing the largest phage release (Figure 6A). The time of MNNG treatment
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B. 0.5 2 6 h
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Figure 6. Developing a standard protocol for <(>BB-1 prophage induction from B. 

burgdorferi CA-11.2A. The induction o f  the <{>BB-1 prophage was evaluated over a range 

of 0 to 50 pg ml'1 MNNG by the presence o f phage DNA (A). After determining that 10 

pg ml'1 MNNG was the most effective concentration for prophage induction, the effect of 

the time of exposure to this concentration o f MNNG was also assayed (B). Phage DNA  

was collected from supernatants of untreated cultures (-) and cultures exposed to 10 pg 

ml'1 MNNG for increasing amounts of time (+). Phage release was similar when the cells 

were treated from 0.5 to 2 h, but decreased with longer exposures to MNNG. Samples 

were electrophoresed on 0.5% agarose gels and stained with EtBr. 32-kb linear phage 

DNA is indicated by the black arrow.

was evaluated from 0.5 to 6 h, with the number of phage released decreasing 

dramatically when cells were exposed to the mutagen for longer than 2 h (Figure 6B).

<{>BB-1 released by recovering C A -11.2A cells (both untreated and MNNG- 

treated) was assayed over a course of about ten doubling times (14) (Figure 7). Although
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Figure 7. Phage release and B. burgdorferi CA-11.2A cell density after MNNG 

treatment. Aliquots from both a treated (+) and an untreated (-) batch culture were 

analyzed for phage every 12 hours (A). DNA was resolved on a 0.5% agarose gel and 

stained with EtBr. The black arrow indicates the first appearance o f phage in the 

untreated culture. The CA-11.2A  cell density of aliquots from both the treated (■; +,

dashed line) and untreated (•; -, solid line) culture was measured at the same 12 hour

time points to correlate cell density with phage release (B; error bars represent the 

standard error of the mean from four independent experiments). The vertical dotted line 

indicates the median time (60 h) at which the highest amount of phage DNA is present in 

the MNNG-treated culture (A; bracket). Relative growth was determined as the 

percentage of growth above the cell density at time point 0.
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phage is first released from untreated cells after 24 h (Figure 7, black arrow), the 

amount of phage released from the MNNG-treated culture is higher as the recovery is 

extended. The amount o f phage present in the treated sample was highest from 48 to 72 h 

after recovery (Figure 7A, +, bracket) and decreased at a much slower rate than the phage 

released by the untreated cells over the next 36 h. In the experiment shown in Figure 7A, 

the amount of phage DNA recovered between 48 and 72 h from the treated culture was 

approximately three-fold that of the phage DNA recovered from the untreated culture 

during the same time period.

The density of the recovering B.burgdorferi CA-11.2A cells was also evaluated 

over the same time period (Figure 7B). Although MNNG-treated cells did not appear as 

viable as untreated cells, there was no evidence of a dramatic culture-wide cell lysis 

associated with phage release in an MNNG-induced culture of B. burgdorferi. There was 

a 16% decrease in cell density between 24 and 36 h, and a 20% decrease between 48 and 

60 h (Figure 7B). Each observed decrease was relative to the previous time point; the 

cell density never decreased below the original number o f cells in the culture.

The 0BB-1 prophage could be induced from high passage B. burgdorferi B 3 1- 

UM (Figure 8, lanes 1 to 3), and Borrelia bissettii DN127 (Figure 8, lanes 7 to 9) as well 

as B. burgdorferi CA-11.2A (Figure 8, lanes 4 to 6) when cells were treated with 10 pg 

ml'1 of MNNG for 2 h. The induction of prophage from B. burgdorferi B31-UM is 

notable because this strain rarely produces phage spontaneously (Figure 8, lanes 2 and 3). 

B. bissetii DN127 is a California tick isolate closely related to B. burgdorferi (26, 122, 

149). DN127 released low levels o f phage when uninduced and could be treated with
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Figure 8. Induction of the <j>BB-l prophage from different Borrelia strains. Cell-free 

supernatants from 10 ml cultures of B. burgdorferi B 3 1 (lanes 1 to 3), B. burgdorferi CA- 

11.2A (lanes 4  to 6) and B. bissettii DN127 (lanes 7 to 9) were analyzed for D N A  

content. The supernatants were collected from log phase starter cultures (pre; lanes 1,4, 

and 7), untreated controls (-; lanes 2, 5, and 8) and cultures treated with 10 |Ag ml'1 

MNNG (+; lanes 3, 6, and 9). The DNA was resolved on a 0.5% agarose g e l. The gel 

was blotted and probed with a cp32-specific probe to enhance detection. T he black arrow 

indicates the 32-kb linear phage DNA.

MNNG to consistently produce slightly higher levels (Figure 8, lanes 8 and 9 ). When 

treated with MNNG, B. burgdorferi CA-11.2A produced a much higher titer o f phage 

than was naturally released (Figure 8, lanes 5, and 6). After MNNG-treatment, phage 

titer from a B. burgdorferi CA-11.2A culture can sometimes approach 109 phage per ml 

of original culture supernatant.

We have assayed several other B. burgdorferi isolates, as well as other Borrelia 

species, for phage production from cells treated with MNNG (Table 4). We have seen no 

evidence of either spontaneous production of phage or MNNG-induction o f the cp32 

prophage from any of these isolates. Supernatants o f both untreated and MNNG-treated
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Borrelia anserina, the causative agent o f avian spirochetosis, and MNNG-treated 

Borrelia coriaceae, the causative agent of epizootic bovine abortions (19), did contain 

DNase-protected extracellular DNA.

B. anserina has a genome that apparently lacks circular DNA [data not shown, 

(106)], suggesting that the DNA released from this species and the genome of 0BB-1 are 

different. Furthermore, the DNA isolated from the supernatant o f B. anserina cultures 

has been sized at approximately 42 kb (data not shown). Neither B. burgdorferi phage 

DNA nor the cp32-specific probe 4, highly conserved among the Lyme disease 

spirochetes (43), hybridizes to the DNA released from either B. anserina or B. coriaceae. 

The DNA isolated from the supernatants of these two species was detected by staining 

with EtBr or GelStar.
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Table 4. Borrelia isolates assayed for MNNG-induction of the 0BB-1 prophage_________

Spontaneous/ Inducible (see F igure 8) No Detectable 0BB-1 Production
B. burgdorferi sensu stricto B. burgdorferi sensu stricto

B 31-U M 1 (high passage) B31-CDC (low  passage)
CA -112 B31-1M 1T (low passage)

C A -11.2 A 297
C A -I1 .2B 1A7 (high passage c lo n e  o f  SH2-82)
C A -11.2G CA-2
C A -11.4 H B 19 (low  passage)
C A -11.2A /R 1331 (coum erm ycin A [-resistant clone; CA-9

gyrB locus) N40 (cloned)
B. bissettii (D N 127) NGR (coum erm ycin A r resistant 

clone; gyrB locus) 
B31-3 (coum erm ycin A [-resistant 

clone; cp26  location)
B. burgdorferi sensu lato 

Borrelia afzelii (IP21)
Borrelia garinii (G2)
Borrelia andersonii (21038) 
Borrelia bissettii (C A -55) 
Borrelia valaisiana (V S 1 16) 
Borrelia japonica (H O  14)

Relapsing fever spirochetes 
Borrelia hermsii (H S1)
Borrelia parkeri 
Borrelia turicata

Borrelia anserina3 
Borrelia coriaceae (C 0 5 3 )3

1 -U M  designates the strain that is used in o u r laboratory; 2 low  passage isolates o f  uncloned C A -1 1 are not

inducible, but as the strain is passaged, phage release is observed m ore often, though not co n sis ten tly ;3 B.

anserina and B. coriaceae produce D N ase-protected extracellu lar DNA that a re  apparently unrelated to 

<j>BB-l (see text)
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Chapter 4

Characterization of the genome of $BB-1

Having demonstrated the relationship between the lysogenic prophage o f <}>BB-1 

and cp32, we now present more data on the genomic content of the phage head. <|>BB-1 

released from B. burgdorferi CA-11.2A packages at least three cp32s, although one is 

more abundant in the phage population. Restriction analysis of the phage genome yields 

a circular molecule, suggesting that the $BB-1 genomic DNA is circularly permuted.

Determining the number of cp32s. Specific probes to individual B. burgdorferi 

B31 cp32s (43) do not hybridize to B. burgdorferi CA-11.2A cp32s (data not shown). To 

determine the number of cp32s in both B. burgdorferi cells and <j)BB-l, oligonucleotides 

that flank a diagnostic variable region (designated VR1) were designed. VR1 

encompasses a portion o f each cp32 where the ospE/ospF/elp (erp) genes are found (see 

Figures 12B and 28) (5, 32, 42, 107, 121, 169, 176). PCR amplification of VR1 with 

these oligonucleotides generates products of different sizes for several of the B. 

burgdorferi B31 cp32s whose sequences are available (Table 5).

Using the VR1 primers and FIGE for maximum resolution, we have identified a 

minimum of four different cp32 molecules present in B. burgdorferi CA-11.2A (Table 6; 

Figure 9, lane 1). We have also identified a minimum of four different cp32s present in

B. burgdorferi strain B31-UM (Table 6; Figure 9, lane 3). The <|>BB-1 phages released 

from CA11-2A and B31 cells package cp32s that are represented by only three (Figure 9, 

lane 2; Figure 9, lane 4) o f the variable regions amplified from the respective hosts. The 

absence o f the ~2.8-kb band from both <)>BB-1 samples suggests that the phage does not

package the cp32 that is integrated into lp56 (Tables 5 and 6).
57
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Table S. Predicted fragment sizes of variable region 1 o f the B31 cp32s*
58

B. burgdorferi B 31 plasmid______________ amplicon size (bp)
cp32-l 3429
cp32-3 2442
cp32-4 3377
cp32-6 2507
cp32-7 3575
cp32-8 3429
cp32-9 3367

lP56 2796
'as determ ined by the M acV ector program  using the published cp32  sequences (42, 114, 176); b lack  arrow s 

and hatched arrow s indicate two pairs o f  variable regions indistinguishable by our m ethods

Table 6. Amplification of the V R ls of CA-11.2A, B31 and 0BB-11
CA-11.2 A CA-11.2A B31-UM total B31-UM Predicted B 31
total DNA phage DNA DNA phage DNA cP322

3426 3426 cp32-l or 8
3343 3343 cp32-9 or 4

3047 3047
2819 2828 lp56
2537 2537

24843 2484 cp32-33
2455

r - t
2455

. .T"'". -.— rr

from >3 trials and applicab le  only to  the B31 frag m en ts;3 prediction confirm ed by sequencing o f  VR1

The proportion of each variable region within a population of B. burgdorferi 

CA-11.2A cells and 0BB-1 phage heads was estimated by semi-quantitative PCR (Figure 

10). Three samples were assayed: total DNA from C A -11.2A cells (Figure 10, lanes 1- 

8), total DNA from MNNG-treated CA-11.2A cells (Figure 10, lanes 9-16), and DNA  

extracted from <t»BB-l produced from MNNG-treated CA-11.2A cells (Figure 10, lanes 

17-24). The cp32 containing the 2537-bp variable region is the dominant species in all 

three CA-11.2A DNA populations (Figure 10, hatched arrow). In all three DNA sources,
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Figure 9. Determining the number of cp32 molecules in B. burgdorferi cells and <j>BB-l 

by amplification of VR1 by PCR. Highly conserved primers that flank a variable region 

(VR1) of cp32 amplify four different size products representing a minimum of four 

different cp32s and homologous molecules (i.e., Ip56) from B. burgdorferi strains C A .ll-  

2A and B 31. The two variable regions from the cp32s o f B31 at -3 .3  kb can be resolved 

with extended electrophoresis times. The 4>BB-1 released from both o f these strains 

package three of these cp32s (lanes 2 and 4), but do not package the molecule that 

generates the ~2.8-kb band, which corresponds to the cp32 integrated into lp56 (black 

arrow). Fragments were resolved on a 0.8% agarose gel by FIGE and stained with EtBr. 

Molecular sizes are in kilobase pairs.

the ~2.5-kb fragment is visible by EtBr-staining about three cycles before the other 

fragments (Figure 10, black arrows), which suggests that theconcentration of this cp32 

species is ~8-fold greater concentration of this cp32 species than the other cp32s in the
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MNNG-treated
Untreated CA-11.2A CA j 1 2 A  <j>BB-l (CA-11.2A)
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t t t
Figure 10. Semi-quantitative analysis of the population of cp32s of B. burgdorferi CA- 

11.2A. The VRls of untreated and MNNG-treated CA-11.2A, as well as 6BB-1 DNA  

from MNNG-treated CA-11.2A supernatants, were amplified with the VR1 primers. 

Samples were collected every three cycles, starting with cycle 6 (lane 1) through cycle 27 

(lane 8). Products were resolved on 0.8% agarose gels by FIGE. The ~2.5-kb fragment 

(hatched arrow) is the dominant species in all three samples. For each sample, the first 

cycle in which this band is visible is marked with a black arrow. Molecular sizes are in 

kilobase pairs.

population. This 2.5 kb band corresponds to the dominant phage genome detectable by 

restriction mapping and Southern hybridization (see below).

Mapping the dominant phage genome. <|>BB-1 genomic DNA was digested 

with several different restriction enzymes. Data from the digestion of phage DNA with
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Figure 11 (previous page). Restriction digests of 0BB-1 DNA. Phage genomic DNA 

digested with Nhel (A), Pstl (B), Sacl (C), or SpeI (D) was resolved on 0.8% agarose gels 

by FIGE. The gels were blotted to nylon membranes and probed individually with 

probes 2 and 4, two cp32-specific probes (43), B, a probe to the blyB  gene on cp32 (75), 

N, a probe that encompasses an Nde I site on the dominant <{>BB-1 genome, and V, a 

probe to the VRls. Uncut phage DNA is shown as a control (<)>). Molecular sizes are in 

kilobase pairs.

Table 7. Restriction fragment sizes1 o f the dominant 0BB-1 genome
Probe 4 Probe 2 Nde I probe blyB probe VR1 probe

N h el 5.5 7.7 15.1 - -

P s tl 7.1 13.9 13.9 9.0 13.9
Sac I 19.7 9.9 19.7 19.7 9.9
Spe I

l —  -

7.3 5.8 9.6 - -
approxim ate sizes in kb; - data for these fragm ents not available

four enzymes is presented in Figure 11, although more than 10 enzymes have been used. 

The digestions of the phage DNA with Pstl and Sacl were the most informative and we 

present mapping data for these enzymes using five different conserved cp32 probes 

(Figure 11, B and C, respectively). The digestions with two other enzymes, Nhel and 

Spe I, are shown with only three different probes (Figure 11A and D). The sizes o f the 

dominant fragments are listed in Table 7.

Using single (Figure 11) and double digests (data not shown) and the five 

available probes, we were able to generate a partial restriction map o f the dominant phage 

genome released from B. burgdorferi CA-11.2A cells (Figure 12). Although the phage 

genome is linear (Figures 2 and 12A), the mapping data are consistent with a circular
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Figure 12 (previous page). Partial restriction map of the dominant 0BB-1 genome.

Using information from single and double digests with selected restriction enzymes, 

linear maps of the dominant phage genome were drawn (A). A gap in the linear map 

indicates that we have no probe for visualizing those fragments, although total 4>BB-1 

DNA hybridizes to fragments of appropriate sizes (data not shown). The black vertical 

lines indicate cut sites of the specific enzyme. The black arrows indicate the same Sad  

cut site (the ends join at that cut site, see 12B). No vertical line at the end of a fragment 

on the linear diagram indicates that the fragment is continued on the other side of the 

linear molecule (as for Nhe I, Pstl, and Spe I), consistent with a circular molecule. A more 

accurate representation of the phage genome is a circular map (B). In both maps, the 

approximate locations of the hybridization probes are shown in bold (N: cp32SKMM, B: 

blyB probe, V: VR1 probe). The circular plasmid diagram was created with the Plasmid 

Artist Demo (GeneSystems Computer Software).

molecule (Figure 12B). The map is shown with the cut sites o f only the four restriction 

enzymes shown in Figure 11. We also have incomplete mapping data for several other 

enzymes, including EcoRV, EcoRl, HindSH, and NdeI (data not shown). The restriction 

map of the dominant CA-11.2A cp32 is different from those of the B31 plasmids; 

however the location of the probes, thus the gene order, is highly conserved (Figures 12 

and 29). A circular restriction map generated from a linear molecule (the 0BB-1 

genome) is indicative of circular permutation (see below and Figure 29).
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Possible terminal redundancy of the <}>BB-1 genome. Because of the 

mechanism by which they are packaged, circularly permuted phage genomes are 

terminally redundant. This terminal redundancy makes the phage genome in the virion 

larger than the lysogenic prophage equivalent. Several methods have been used to 

determine the size o f the <|>BB-1 genome. The phage DNA has been previously sized at 

32.7 kb by electron microscopy (102) and 32.3 kb by conventional gel electrophoresis 

(137). Using the same method of regression analysis o f DNA resolved by conventional 

gel electrophoresis, the circular cp32s were previously determined to be 29.3 kb (137). 

The actual sizes of the B31 cp32s range from 29.8 to 30.9 kb (176).

We have directly compared the size o f <]>BB-1 DNA and linearized cp32 

molecules from CA-11.2A (Figure 13). The phage DNA was sized at 31.3 kb (Figure 13, 

lane 1) and the linearized CA-11.2A cp32s were sized at 29.9 kb (Figure 13, lane 2, black 

arrow).

The size range of the CA-11.2A cp32s, while predicted to be similar to that o f the 

B31 cp32s, is not known, and there is likely overlap between the cp32-sizes and the 

lower limit of our measurements, but the size difference is visually apparent (Figure 13). 

By three means (electron microscopy, regression analysis o f DNA resolved by 

conventional gel electrophoresis, and regression analysis of DNA resolved by field- 

inversion gel electrophoresis) we have sized the <)>BB-1 genome as larger than the 

predicted cp32 sizes. We anticipate that the size difference (>1.4 kb) between the phage 

DNA and the lysogenic prophage is likely due to terminal redundancy at the end of the 

DNA packaged into the virion.
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Figure 13. Size comparison of <j)BB-l D N A  with linearized cp32s/prophages. 

Undigested phage DNA and B. burgdorferi C A -11.2A plasmid DNA that had been 

digested with Bsu36l, an enzyme that cuts the CA-11.2A cp32s once or not at all (data 

not shown), were resolved on 0.8% agarose gels by FIGE, and the gel was stained with 

EtBr. The phage DNA (lane 1, hatched arrow) is larger than the linearized cp32 

molecule(s) ( la n e  2, black arrow). The location o f the linearized cp32 molecule was 

confirmed by Southern hybridization with a cp32-specific probe (data not shown). The 

size of the phage DNA is -31.3 kb and the size o f the linearized cp32(s) is -2 9 .9  kb as 

determined by regression using the Multi-Analyst software. The molecular sizes are in 

kilobase pairs.
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Cyclical permutation o f the linear phage genome. The conversion o f a 

circular molecule like cp32 to a linear phage genome that is packaged into a procapsid 

requires a processing step. Using restriction digests (Figure 11) we have determined that 

the (j)BB-l genome is circularly permuted. That is, there is more than one cut site at 

which the processing occurs on the phage genome (see Figure 29). There are two types 

of permutation possible: (1) restricted permutation with the processing site within a small 

portion of the total genome, or (2) random permutation with the processing site anywhere 

within the genome (see Figure 30). To distinguish the two possibilities, /fi/idJII-digested 

end-labeled phage DNA was hybridized to phage DNA that had also been digested with 

HindM  (Figure 14, lane 1). The amount of hybridization (Figure 14, lane 2) appears 

equal between all of the fragments, suggesting that all the fragments contain an end that 

can be labeled, which might indicate random circular permutation o f the <>BB-1 genome.
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Figure 14. Circular permutation of the 0BB-1 genome. Phage DNA was digested with 

HindOl and subjected to FIGE (lane 1). The gel was blotted and probed with phage DNA  

that was end-labeled and then digested with HindSl (lane 2). The amount of label 

hybridized to each fragment appears to be approximately equal in intensity to the EtBr- 

stained DNA. Molecular sizes are in kilobase pairs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 

The search for phage proteins

Here we present our efforts to identify and characterize the proteins o f <|>BB-1 as 

isolated from the cell-free supernatants o f B. burgdorferi. Two approaches have been 

taken to reduce the number of non-specific proteins from PEG-precipitated phage 

samples. Using these methods, we have identified two proteins that could be phage- 

related structural proteins. In collaboration with Don Oliver and Chris Damman from 

Wesleyan University, we have also characterized two putative non-structural phage 

proteins encoded on cp32.

Structural phage proteins from  CsCl purified 0BB-1. BSK-complete is a 

protein-rich, serum-based medium (14) (Table 8). Concentrating phage particles with 

PEG also precipitates a large number o f other medium proteins non-specifically (Figure 

15A, Str lane). We have used successive CsCl-gradients as a means of removing some of 

the background proteins (Figure 15). Phage-containing samples, as assayed by the 

presence of <pBB-l DNA, were ultracentrifuged through three CsCl-gradients. After each 

gradient, phage-containing fractions (fraction 5) were pooled from multiple samples and 

dialyzed.

A small portion of the dialyzed sample was saved from each gradient for the 

analysis of protein (Figure 15 A) and phage DNA content (Figure 15B). The 3X fraction 

5 sample was also viewed by electron microscopy and intact phage-heads (without tails) 

were observed (data not shown). Purifying the phage by several CsCl-gradients was also 

a reliable method for producing phage DNA suitable for restriction digestion (data not 

shown).

69
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3X 2X IX Str

3X 2X IX  Str

Figure 15. Analysis o f phage samples purified by multiple CsCl-gradient centrifugation. 

PEG-precipitated supernatant from C A -11.2A cultures was applied to a CsCl-gradient 

(Str). After ultra-centrifugation the fractions were collected in 400 pi aliquots from the 

top, and the fifth fraction, which contained the phage DNA (B; hatched arrow), was 

collected and dialyzed against SM (IX). This step was repeated twice more, with the 

fifth fraction being retained each time (2X, 3X). A  sample from each step was resolved 

on a 12.5% SDS-PAGE gel and stained with CBB (A). A number of small proteins 

(bracket) seem to increase, but there are no distinct bands that emerge from this one

dimensional analysis. Additionally, a large -7 0  kDa band (black arrow) appears to 

increase as the amount o f BSA decreases. We are currently purifying this protein for N- 

terminai sequencing or MALDI mass spectrometry. Molecular sizes in kDa are shown.
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Most head proteins of tailed-bacteriophage are between 30 and 40 kDa (37).

There was no dramatic increase o f proteins of this size despite the presence of intact 

phage heads, as assayed by DNA presence (Figure 15B) and electron microscopy (not 

shown). There is a small increase in a number of indistinguishable proteins of 24 to 28 

kDa, but no discrete bands (Figure 15 A, bracket) and obtaining sequence from what 

appears to be multiple proteins would be difficult. The resolution of the proteins within 

this grouping might require two-dimensional gel electrophoresis.

As the amount of BSA diminishes, there is also an increase o f a larger protein,

-7 0  kDa, visible in fraction 5 (Figure 15A, black arrow). This is consistent with the sizes 

of some tail proteins, however electron micrographs of phage purified from CsCl- 

gradients suggest that the tails are missing from the phage heads. The head protein may 

be covalently modified, possibly linked as a dimer by a reducing agent-resistant and heat- 

stable bond, causing the protein to migrate as a much larger molecule. We are currently 

purifying this protein for N-terminal sequencing.

A low-protein medium. There are two major protein components to BSK- 

complete: BSA and rabbit serum (Table 8). We have attempted to substitute these 

elements with cell culture media enhanced with lipids or Excyte VLE (Bayer), a lipid 

supplement. In many cases, relatively high density growth (-1 0 7 cells ml'1) of B. 

burgdorferi could be achieved for the first two or three passages, but these cells no longer 

released $BB-1 (data not shown).

To lower background proteins from induced phage preparations, a low-protein 

medium that was suitable for phage induction was formulated. BSK medium that 

contained no rabbit serum was prepared and rabbit serum was added to aliquots of the
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Table 8. Components of the standard B. burgdorferi culture medium 
BSK-complete________________________________________________

72

CMRL-1066 (w/o L-glutamine and sodium bicarbonate) 
neopeptone
bovine serum albumin (47 g L'1)
HEPES
glucose
sodium citrate
sodium pyruvate
N-acetyl-D-glucosamine
sodium bicarbonate
rabbit serum (6.6%)___________________________________________
Bold: com ponents that contain the m ost proteins

serum-free medium in increasing quantities. The final concentration of rabbit serum in 

the media ranged from 0 to 8%. Phage production by CA-11.2A cells after MNNG- 

treatment required a minimum serum content o f 3% and did not appear to improve 

significantly with an increase in the serum percentage (data not shown).

BSK medium containing 3% rabbit serum and no BSA was prepared. Fraction V 

BSA was added back into aliquots o f the media so that the final concentrations ranged 

from 0 to 40 g L'1 BSA. <|>BB-1 release after MNNG-treatment did not appear to require 

exogenous BSA being added, although the amount of phage released appeared to increase 

modestly with an increase in exogenous BSA (Figure 16; black arrow). Whether the 

serum albumin present in 3% rabbit serum is sufficient for the physiological requirements 

of phage release, or whether phage release is independent o f the presence of any serum 

albumin has not been explored.

We have designated the low-protein medium containing 3% rabbit serum and no 

exogenous BSA as BSK-chel. B. burgdorferi CA-11.2A cells were grown to log phase 

in BSK-complete, treated with MNNG and recovered in BSK-chel. After recovery,
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Figure 16. The effects of BSA concentration on <t>BB-l release. MNNG-treated B. 

burgdorferi CA-11.2A cells were recovered in samples of BSK medium that had 3% 

rabbit serum and BSA concentrations ranging from 0 to 40 g L 1. The amount o f phage 

released from these cells was analyzed by DNA extraction (black arrow) and resolution 

on a 0.8% agarose gel by FIGE. The gel was stained with EtBr. As a control, a culture 

was left untreated with MNNG and recovered in BSK-complete (neg). Molecular sizes 

are in kilobase pairs.

phage particles were collected by PEG-precipitation. BSK-chel that contained no cells 

was also precipitated as a control to evaluate protein background. An aliquot of the PEG- 

precipitated sample was analyzed for the presence o f phage DNA as described above 

(data not shown). A portion of the sample that contained phage DNA was then resolved 

on a 12.5% SDS-PAGE gel (Figure 17). The sample loaded in Figure 17 is at least three 

times more concentrated than the samples in Figure 15A (Str). Although the background 

has been significantly reduced, the only protein that is increased in the phage-containing 

sample (Figure 17, lane 2), but not the low-protein medium control (lane 1), is an ~25- 

kDa protein (black arrow).

Because of the difficulties involved in resolving this protein in one dimension, we 

have been unable to obtain N-terminal sequence o f the 25-kDa protein. Recently, we 

have excised this band and attempted a second SDS-PAGE purification that has yielded
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Figure 17. A possible <{>BB-1 phage protein shed into a low-protein medium. A sample 

of precipitated phage particles collected from a low-protein medium was resolved on a 

12.5% SDS-PAGE gel (<|>BB-1; lane 2). A negative control o f PEG-precipitated low- 

protein medium was also resolved (BSK-chel control; lane 1). The gel was stained with 

silver. There was one distinct ~25-kDa protein present in the phage sample, but not in 

the control (black arrow). The protein was not resolved enough to obtain useful N- 

terminal sequence data. Molecular weights are in kDa.

promising preliminary results, but we have not yet concentrated enough protein by this 

method for sequence analysis.

Non-structural phage proteins. Don Oliver and Chris Damman have proposed 

that two proteins encoded on cp32, BlyA and BlyB, comprise a holin-like system (50), a 

component o f the lysis mechanism for all known tailed-phages (191, 192). In 

collaboration with these researchers, we have characterized this holin-like system with
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relation to 0BB-1 prophage induction. In this system, blyA encodes a putative holin, 

while the function of the blyB gene product remains unclear, but is postulated to be 

involved in cell lysis.

To examine the synthesis o f BlyA and BlyB in B. burgdorferi B 3 1, CA-11 and 

CA-11.2A, cells were left untreated (Figure 18, uninduced; -) or were treated with 

MNNG (Figure 18, induced; +). After the appropriate recovery time, the level of 

synthesis of BlyA and BlyB proteins was determined by Western analysis (Figure 18 A) 

and the expression of the blyAB transcript was analyzed by Northern hybridization 

(Figure 18C). The PEG-precipitated samples were also analyzed for the presence of 

phage DNA (Figure 18B).

There is a dramatic increase in the amount of both BlyA (7.4 kDa) and BlyB (13 

kDa) in all three strains (Figure 18A), correlated with the induction of 4>BB-1 DNA 

(Figure 18B). The uninduced CA-11.2A cells produced BlyA at low levels (Figure 18A, 

-), as expected, since this culture was also producing phage (Figure 18B, -). Protein 

extracts from E. coli cells expressing blyA and blyB were also probed with the antibodies 

as a positive control (data not shown).

To evaluate the synthesis o f  another plasmid-encoded protein after MNNG- 

treatment, protein extracts from induced and uninduced cultures were also probed with an 

OspC antibody (Figure 18A; OspC control). ospC  is a differentially-expressed gene on 

cp26 that encodes an outer surface protein of B. burgdorferi (6, 26, 70 ,96 , 148, 177, 185- 

187). The amount of the OspC protein appears relatively constant in both uninduced 

(Figure 18, -) and induced cultures (Figure 18, +) of the major phage producing strains, 

B31 and CA-11.2A, suggesting that the increase in BlyA and BlyB synthesis is not just
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Figure 18. Induced expression of a possible holin-like protein. Protein extracts from 

MNNG-treated cells (+) and untreated controls (-), were resolved on 17.5% 

polyacrylamide gels and analyzed by Western blotting with the appropriate antibody for 

BlyA and BlyB, as well as a control, OspC (A). The increase in the synthesis o f the 

BlyA and BlyB proteins correlates well with the increase in phage release (B, black 

arrow). The expression o f the blyAB transcript RNA from these cells was analyzed by 

Northern hybridization (C, hatched arrow). The Northern blot was probed with the -400  

bp blyB probe [as well as the -175 bp blyA probe (data not shown)].

due to the global upregulation of all protein synthesis in response to the stress of MNNG 

treatment.
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blyA and blyB are on the same operon and they are co-transcribed on the same 

RNA transcript (75, 121). Northern analysis o f  the RNA from uninduced (-) and induced 

(+) cultures indicates that the expression of the blyAB transcript is also increased in all 

three MNNG-treated cultures (Figure 18C).

Damman and Oliver have shown that in E. coli expressing B. burgdorferi blyA 

and blyB, the majority o f the BlyA protein was found in the membrane and the majority 

of the BlyB protein was found in the soluble fraction (50). W e assessed the subcellular 

location of these proteins in MNNG-treated B. burgdorferi cells (Figure 19). The treated 

cells were sonicated and the lysate was ultracentrifuged. Proteins from the pellet (P100) 

and from the supernatant (S100) were resolved by SDS-PAGE and blotted with the BlyA 

and BlyB antibodies (Figure 19). All of the BlyA was found in the pellet fraction, 

containing the membrane-bound proteins, and most of the BlyB was found in the 

supernatant fraction, containing the soluble proteins. These data indicate that the 

subcellular location o f these two proteins was the same in B. burgdorferi as in E. coli.

The location of BlyA in B. burgdorferi is also consistent with the proposal that this 

protein is a membrane-bound bacteriophage holin (191). Taken together, these data, 

along with previous structural and functional data (50), suggest that the BlyA and BlyB 

proteins may play an important role in cell lysis during the last stage of the <(>BB-1 lytic 

cycle.
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Figure 19. The cellular location of BlyA and BlyB in B. burgdorferi cells. MNNG- 

treated B. burgdorferi CA-11.2A cells were sonicated and the cellular lysate 

ultracentrifuged at 100,000 x  g  to obtain the supernatant (S 100), containing soluble 

proteins, and the pellet (P100), containing membrane-bound proteins. The proteins were 

resolved by 17.5% SDS-PAGE and blotted to Immobilon-P. Two identical blots were 

probed with either the BlyA antibody (left) or the BlyB antibody (right).

BlyA

P100 S100
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Chapter 6 

Transduction by $BB-1

Here we demonstrate that 0BB-1 is capable o f transducing an antibiotic-resistance 

marker between B. burgdorferi cells. We have constructed a recombinant cp32 (0BB-1 

prophage) carrying a kanamycin-resistance cassette (provided by J. Bono) and 

transformed B. burgdorferi CA-11.2A. <j)BB-l shed from the transformant was used to 

transduce the antibiotic-resistance marker to susceptible CA-11.2A cells as well as cells 

from other strains of B. burgdorferi.

Inserting the kanamycin-resistance cassette into a cp32. pCE210 was 

constructed by cloning the kanamycin-resistance (fawi*)-cassette expressed from the B. 

burgdorferi flgB  promoter (28) into a plasmid containing -3 .5  kb o f phage DNA. This 

plasmid was linearized and transformed into competent B. burgdorferi CA-11.2A cells. 

Colonies selected in 500 pg ml'1 kanamycin were screened by PCR primers that flank the 

site into which the kanR-cassette had been inserted (Figure 20A). The ~1.4-kb product 

(Figure 20A, hatched arrow) contains the kanR-cassette. The -1 0 0  bp product (Figure 

20, black arrow) was amplified from the other homologous cp32 loci in the cell that did 

not contain the insert. Both products are expected in a population of B. burgdorferi cells 

containing more than one homologous cp32 if the £a/i*-cassette recombines into only one 

of them. Our mapping data show that the site of the foz/i*-cassette insertion (on fragment 

12SK) is located within or near one of the variable regions (not VR1) of the cp32 

molecule (Figure 25 and Table 3).
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CA-11.2A/KanR ®* 0BB-1 released from
+ clones + '  CA-11.2 A/kanR clones

Figure 20. Kanamycin-resistant transformants o f B. burgdorferi. Transformed CA- 

11.2A cells were selected with 500 pg ml'1 kanamycin and colonies were screened by 

PCR using the cp32SKMfeI primers that flank the fam^-cassette insertion site (A). The 

PCR products were resolved on a 1% agarose gel and stained with EtBr. Both o f the 

clones shown here contain two products, a small product that is the result of PCR from 

wild-type (uninserted) DNA (-100-bp; black arrow) and the larger product that contains 

the kanR-cassette (~1.4-kb; hatched arrow). Phage released from several CA-11.2A/kanR 

transformants were assayed for the kanamycin-resistance cassette by PCR (B). The 

phage DNA also contains both inserted (hatched arrow) and uninserted (black arrow) 

cp32s. pCE210 DNA was amplified as a positive (+) control and wild-type C A -11.2A 

phage DNA was used as a negative (-) control.

Phage collected from the supernatants of these transformants contain the kanR- 

insertion, as well as parental phage genomes (Figure 20B), consistent with the results 

from the variable region analysis indicating that more than one cp32 is packaged in a 

population of 0BB-1 phage heads (Figure 9). In all cases, PCR performed on the 

transformed strain and phage using an internal fczn*-primer (Kanl207F) and the
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cp32SKM/eIF primer generates a single positive product of -150  bp (for example see 

Figure 23B).

The cellular location o f  the integrated kanamycin cassette was determined by 

Southern hybridization (Figure 2 IB and C) of total cellular DNA resolved by two- 

dimensional electrophoresis (Figure 21A). The blot of the gel was probed with the cp32- 

specific probe 4 to localize the circular 32-kb molecules (Figure 2 IB). The membrane 

was also probed with pOK12, the original source of the kanamycin-resistance gene (28, 

181) (Figure 21C). The kanR-probe hybridizes only to the CA-11.2A/kanR transformant, 

and has the same hybridization pattern as probe 4, locating the insertion on a cp32. 

Extracted phage DNA (Figure 22A) was also probed with probe 4  (Figure 22B), which 

hybridizes to phage DNA released from both the parental and the transformed CA-11.2A. 

The kanR-cassette probe hybridizes to only the <j>BB-l DNA packaged and released by 

CA-11.2£JkanR (Figure 22C).

Transduction. To evaluate the ability of 0BB-1 to introduce the kanR-gene into 

kanamycin-susceptible cells, bacteriophage from the CA-1 l^A/fozn^-transformant were

Figure 21 (over). Analysis o f  the genomic location of the kanamycin-resistance cassette. 

Total DNA from both parental CA-11.2A and transformed CA-11.2AIkanR was extracted 

and resolved by two-dimensional gel electrophoresis. The gel was stained with EtBr (A) 

then blotted to nylon and probed with the cp32-specific probe 4 (B) or pOK12, the source 

of the kanR gene (C). The kanR -probe has the same hybridization pattern as the cp32 

specific probe, indicating that the integration of the cassette was into a cp32/prophage 

(circular form; black arrow). Molecular sizes in kilobase pairs are indicated.
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Figure 22. Analysis o f the packaging of the kanR-casselte by (j)BB-l. Phage particles 

were precipitated from both parental (P) and transformed (Tf) CA-11.2A cells. The DNA  

was extracted and resolved on a 0.5% agarose gel by conventional field electrophoresis. 

The gel was stained with EtBr (A), then blotted and probed with either probe 4 (B) or the 

fozn^-probe (pOK12; C). The conserved cp32 probe hybridizes to both the parent and the 

transformant (black arrow), but the kanR probe hybridizes to only the transformant. Thus, 

the -1 .3  kb antibiotic-resistance marker was inserted into the lysogenic prophage and is 

packaged by $BB-1. Molecular sizes are in kilobase pairs.

incubated with CA-11.2A cells at a ratio o f approximately 1000:1. After an overnight 

incubation, the cells were plated in 500 pg ml'1 kanamycin. We screened 10 of -100  

colonies by PCR. All o f the kanR colonies contained the kanR-gene integrated into a 

cp32.
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The efficiency o f transduction o f <>BB-1 between CA-11.2A cells is about 1 x  

10 s. Plates containing no phage and CA-11.2A cells, or plates with phage but no cells 

had no colonies. The addition of PK to the <|>BB-l/&a/i* prior to incubation with cells 

abrogated the transduction o f the antibiotic-resistance marker. Incubating washed, 

chloroform-killed CA-11.2A/Jfcan* cells with live CA-11.2A cells resulted in 0 to 3 

colonies. No colonies grew when PK was added to the dead transformant cells prior to 

mixing them with susceptible cells. This implies that even the small amount of transfer 

between dead CA-1 \.2PJkanR cells and live CA-11.2A cells requires protein. These data, 

taken together, suggest that the lateral genetic transfer is mediated by phage <{>BB-1.

<j>BB-l/fo/z* from the CA-11.2A transductant (CA.l 1-2A TR3) was incubated 

with several other isolates of B. burgdorferi (Table 4). We have demonstrated 

transduction of the kanR-cassette by 0BB-l/fam* (CA-11.2A) into B. burgdorferi strains 

B31 and 1A7 (a high passage clone o f B. burgdorferi SH2-82) (Figure 23). The 

efficiency of transduction by ^BB-l/fom* (CA-11.2A) into other strains is much lower, at 

about 1 x  10'7, or 100-fold less efficient than into CA-11.2A cells. Neither the 1A7 

transductant (1A7 TR5) nor the B31 transductant (B31 TR1) assume the CA-11.2A 

phage-producing phenotype. No demonstrable DNA transfer occurred when dead CA- 

1 \.2PdkanR cells were incubated with 1A7 and B31 cells.

To verify that TR3 and TR1 were CA-11.2A and B 3 1, respectively, the first 300 

bp of the polymorphic outer surface protein, ospC, were sequenced. The sequences, 

which are strain-specific and diagnostic (103, 185, 186), were consistent with the ospC  

sequences expected from each strain.
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A. cp32SKMM primers

CA-11.2A B31 1A7

P Tf Td P Td P Td

B. Kan 1207F/cp32SKMfeIF 
primers

CA-11.2A B31 1A7

P Tf Td P Td P Td

+ 1 2 3 4 5 6 7  + 1 2 3 4 5 6 7

Figure 23. PCR analysis of fozn*-transductants of B. burgdorferi. B. burgdorferi strains 

C A -i 1.2A, B31, and 1A7 (a high passage SH2-82 clone) were incubated overnight with 

§BB-UkanR (CA-11.2A) and the cells were plated in 500 ng ml'1 kanamycin. Colonies 

were screened by PCR using the cp32SKAfafeI primer pair that flank the fcan*-insertion 

site (A). Transductants (Td) contain both the -100 bp negative product (all lanes, 

hatched arrow) and the ~1.4-kb band that contains the fozn^-cassette (black arrow; lanes 

3, 5 and 7). pCE210 was amplified as a positive control (+), while the parental cells (P) 

of each strain served as negative controls (lanes l, 4 ,6). Lane 2 is the C A -11.2A/kanR 

transformant (Tf). The transduction was verified by PCR using the KanR1207F/ 

cp32SK/VicfeIF primer pair (B), which yields an -  125-bp product from DNA containing 

the kanR-cassette (B; black arrow, lanes 2, 3, 5, and 7). pCE210 was amplified as the 

positive control (+). No product was amplified in the parental strains (lanes 1 ,4 , and 6) 

when the junction between the cp32 sequence and the foz/i*-cassette was the target of the 

PCR. The products were resolved on a 1% agarose gel and stained by EtBr as described 

above. The fca/i*-integration site in each transductant was also verified by long range 

PCR using the KanR1207F/VR1R primers (data not shown).
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<j>BB-l/ifca/i* (B31) also packages the kan1*-cassette (data not shown). We were 

able to efficiently transduce the kanR-marker into B31 using <|>BB-l/ifcun* (B31), but we 

have not yet been able to transduce the gene back into susceptible CA-11.2A cells using 

<J>BB-1 /kanR (B31).

Variable region analysis of the transduced cp32s. We have demonstrated a 

possible mechanism for lateral gene transfer in B. burgdorferi via transduction by <J>BB-1. 

To determine if the kanR-cassette of 0BB-1 was introduced as a discrete plasmid or by 

recombination, the V Rls of the parent strains, CA-11.2A, B31 and 1A7, as well as the 

transduced strains, CA-11.2A TR3, B31 TR1 and 1A7 TR5 were amplified and resolved 

by FIGE (Figure 24). The variable region V R 1 is located ~5-kb from the site of the kanR- 

insertion (Figure 25). The fragments generated by PCR from the VR1 regions of the CA- 

11.2A transductant, TR3 (Figure 24, lane 2), are identical to those of parental CA-11.2A  

(Figure 24, lane 1; for sizes, see Table 6, Chapter 4). The B31 transductant (TR1; Figure 

24, lane 4; for sizes, see Table 6), no longer has the smallest VR1 (2484 bp) of the 

parental B31 (Figure 24, lane 3), but has now gained a VR1 that is the same size as the 

second smallest CA-11.2A VR1 (2537 bp; Figure 24, black arrow). The B31 

transductant has also lost the variable region corresponding to lp56, but whether this is a 

result of the natural loss of the plasmid during cloning or due to the introduction of the 

0BB-l/foanR (CA-11.2A) prophage is unknown. 1A7 also has a small VR1 (2373-bp) that 

is missing from 1A7 TR5, and the transductant has a VR1 that is also the same size as the 

second smallest CA-11.2A VR1. This analysis suggests that the VR1 from the 

introduced cp32, which contains the 2537-bp VR1 (data not shown), has replaced the
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Figure 24. Amplification of VR1 from B. burgdorferi &a/i*-transductants. The VR1 

primers were used to amplify the cp32 V R ls of parental CA-11.2A (lane 1), B31 (lane 3), 

and 1A7 (lane 5) as well as the variable regions of CA-11.2A TR3 (lane 2), B31 TR1 

(lane 4), and 1A7 TR5 (lane 6). There are no changes in the plasmid complement 

between the parental (lane 1) and transductant (lane 2) CA-11.2A strains, but both B31 

TR1 (lane 4) and 1A7 TR5 (lane 6) have lost a variable region o f the parental strains and 

both have gained the -2 .5  kb VR1 (black arrow). Additionally, the B 3 1 transductant has 

lost the variable region corresponding to lp56. Amplification products were resolved on 

0.8% agarose gels by FIGE and stained with EtBr. Molecular sizes are in kilobase pairs.

smallest V R ls of both B31 TR1 and 1A7 TR5. Whether the loss o f the variable region 

from the transductants is due to displacement of a resident plasmid, recombination by the 

kanR-gene into an extant plasmid, or due to the loss of a plasmid during cloning and 

subsequent replacement with the ^BB-l/ifca/i* (CA-11.2A) prophage is not known.
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Figure 25. The insertion site of the Aa/i^-cassette. The circular phage map shows the 

approximate distances between the kanR-cassette insertion site (black arrow) and the 

Southern hybridization probes used (probe 2: ~4000-bp, VR1 probe: ~5000-bp, probe 4: 

-15,000-bp, blyB probe: -5 ,000-bp). The /fca/i*-cassette is inserted in the middle of the 

BBP31 paralog present on the dominant $BB-1 genome.

Amplification o f the V R ls from phage released from the B31 and CA-11.2 A 

transductants was consistent with the results from the plasmid DNA. The V R ls not 

packaged by wild-type phage from parental cells are also not packaged by 

recombinantphage from transduced cells (data not shown). We are currently cloning and 

sequencing the 2537-bp VR1 from CA-11.2A and the transduced strains B31 TR1 and 

1A7 TR5. Both the semi-quantitative PCR (Figure 10) and restriction mapping of the 

transductants indicate that the VR1 region that is introduced into B31 TR1 and 1A7 TR5
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is from the dominant phage genome for which we have generated a partial restriction 

map (Figures 12 and 25). We have confirmed that the 2537-bp VR1 is linked to the 

kanR-cassette on the transduced <{>BB-1/Jfcan* (CA-11.2A) genome by long-range PCR 

(data not shown).

Restriction mapping of transductants. Plasmid DNA from CA-11.2A, CA- 

11.2AJkanR and CA-11.2A TR3 was extracted and digested with EcoKV  to analyze the 

change in the cp32 molecules between the strains. We used Southern hybridization to 

map the location of the kanamycin-cassette on cp32 (Figure 26).

There are four hybridization sites in the cp32 population digested with EcoKV 

(Figure 26, left panel). This includes the -6 .6  kb band (hatched arrow) in the parental 

CA-11.2A (Figure 26, lane 1). This fragment is not present in either the CA-11.2A/kanR 

transformant (Figure 26, lane 2) or the transductant, CA-11.2A TR3 (Figure 26, lane 3).

In the latter two strains, there is an ~8-kb fragment (Figure 26, black arrow) that is not 

found in the parental strain. The size difference is the same size as the kan -cassette 

(-1.3 kb), suggesting the fom*-cassette has been inserted into the 6.6 kb fragment. When
n

the same blot is probed with the kan -marker, the -8-kb fragments in the CA-11.2AJkan 

transformant and in CA-11.2A TR3 are the only hybridization sites (Figure 25, right 

panel, lanes 2 and 3, respectively). The -6.6-kb fragment corresponds to the dominant 

band in an EcoKV digest of 0BB-1 DNA probed with the cp32SKMefeI probe (data not 

shown).

To compare the fam*-insertion site in the other transductants, plasmid DNA was 

extracted from the parental CA-11.2A, B31, 1A7 and the transductant CA-11.2A TR3, 

B31 TR1 and 1A7 TR5 cells. The plasmids were digested with Xbal and the DNA
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Figure 26. Restriction mapping of parental, transformant and transductant C A -11.2A  

DNA. Plasmid DNA was extracted from C A -11.2A (lane 1, P), the CA-11.2Adkan* 

transformant (lane 2, Tf), and CA-11.2A TR3 (lane 3, Td), digested with EcoKV, and 

resolved by FIGE. A blot of the gel was probed with either the cp32SKNdeI PCR 

product (left panel), or with the )fcan*-marker (right panel). Parental CA-11.2A has a -6 .6  

kb fragment (hatched arrow) that is not present in either the transformant or the 

transductant. Instead, these two isolates have an — 8-kb band (black arrow) that 

corresponds to the -6.6-kb band plus the 1.3 kb kanR-insert. The restriction pattern of the 

transformant and transductant cp32s are identical. Molecular sizes are in kilobase pairs.

resolved by FIGE. A blot of the gel was probed with both the cp32SKM/eI PCR product 

and the fazn*-cassette (Figure 27). When probed with the cp32SKM/eI product (Figure 

27, left panel), there is hybridization to a -6.6-kb Xbal fragment that is found
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Figure 27. Comparison of the restriction maps of the cp32s of B. burgdorferi kanR-

transductants. Plasmid DNA from CA-11.2A (lane 1), CA-11.2A TR3 (lane 2), B31

(lane 3), B31 TR1 (lane 4), 1A7 (lane 5), and 1A7 TR5 Oane 6) was digested with Xbal
»

and resolved by FIGE. A blot o f the gel was probed with either the cp32SKAWeI probe 

(left panel) or the fom*-probe (right panel). The 1A7 parent and the 1A7 transductant 

appear identical, except for the addition of an ~8-kb band. The B 31 parent has three 

bands (lane 3; *) that do not appear in B31 TR1, possibly due to displacement o f  an 

under-represented cp32, or a loss of this plasmid during cloning.

exclusively in the parental CA-11.2A  (Figure 27, lane; hatched arrow). An associated 

~8-kb fragment is present in all the transductant lanes (Figure 27, lanes 2 ,4 , and 6; black
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arrow). Hybridization with the kanR-cassette (Figure 27, right panel) verified that the 

~8 kb fragment contained the Jfco/i*-cassette in all three transductants. There are also three 

bands visible in the £coRI-digest of parental B31 that are not present in the B31 

transductant, TR1 (data not shown). The phage plasmid containing the kanR-cassette was 

either introduced into the transduced strains as a discrete plasmid, or the phage plasmid 

recombines into an extant cp32 in a large stretch that encompasses both the variable 

region and the blyB region (data not shown), a distance of almost 10-kb (Figure 25).
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Chapter 7 

Discussion

Thousands of bacteriophages have been identified in a large number of different 

bacterial species, yet their fundamental importance for the studies o f molecular biology, 

genetics and epidemiology are reflected in the excitement still generated over the 

discovery of previously unidentified viruses. The importance of a new discovery is 

amplified when the bacteriophage that is characterized is from a species o f bacterium that 

has previously had none described (3).

At what level of characterization is a new phage described? Most bacteriophage 

are identified primarily by their structural properties by electron microscopy, yet the 

ambiguity of sample contamination, staining artifact and relatively little molecular 

information gained from this technique (although electron microscopy remains a very 

powerful tool) has prompted most researchers to term viruses identified solely by 

microscopy as bacteriophage-like particles. Ackerman and colleagues, as members of the 

Bacterial Virus Subcommittee of the International Committee on Taxonomy of Viruses 

(ICTV), have proposed a series of traits that should be considered when determining 

whether a new phage has been described, including visual characterization, nucleic acid 

content, host range, and various chemical susceptibilities (3).

With these considerations, we now present evidence for a new bacteriophage of 

the Lyme disease agent, B. burgdorferi. This is the first molecular characterization o f a 

bacteriophage from this genus. Based on our characterization we have assigned the name 

(J>BB-1 to the bacteriophage described here.

9 3
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7.1 Structural features o f 0BB-1 particles.

A number of bacteriophage-like particles have been visualized in association with 

B. burgdorferi by electron microscopy (19, 77,117, 144). The phage we describe here is 

structurally different from the elongated phages (19, 77) and one o f the ciprofloxacin- 

inducible phages (117, 144) reported previously. $BB-1 may be structurally similar to 

the phage with A -l morphology reported by Neubert et al., but its capsid size is 1.5 times 

larger than that of the phage they visualized (30 nm) (117). <j>BB-l also has an A -l 

morphology, but the particle size is ~46 nm with a contractile tail o f  90 x  10 nm (Figure 

4). These structural characteristics place this newly described phage into the group of the 

tailed-bacteriophages, order Caudovirales (2). Characteristics of the bacteriophage in 

this order include a double-stranded DNA genome, an isometric capsid, and a tail that is 

involved in the injection o f phage DNA into the host cell during infection (2).

The chloroform-resistance of the 0BB-1 particle is consistent with a phage capsid 

that contains a protein coat and no lipid component. Additionally, the resistance to 

chloroform was an important consideration when identifying the particle as a possible 

bacteriophage. B. burgdorferi is a member o f a group o f bacteria, mostly Gram-negative, 

that package DNA into membrane-bound vesicles and release these vesicles into the 

culture milieu (56,71). The DNA packaged in these ‘blebs’ appears to be non-specific 

genomic DNA of various sizes (56). Intercellular transfer of bleb DNA has been 

demonstrated in Neisseria gonorrhoeae (57), although not yet for Borrelia. Two 

important differences between blebs and the particle we have described are (1) the 

specific packaging of double-stranded 32-kb circular plasmid DNA by <>BB-1 (Figure 5)
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and (2) the chloroform-resistance of the particle, as evidenced by the continued DNase- 

protection after chloroform treatment (Figure 2), to which membrane-bound vesicles are 

susceptible but the majority of tailed bacteriophage particles are not (2, 3).

7.2 The 32-kb circular plasmid as the prophage.

After an extensive analysis of the conserved size o f the linear chromosomes of B. 

burgdorferi sensu lato strains distributed world-wide, Casjens et al. concluded that any 

prophages in these bacteria were likely contained in the plasmids (38). The 32-kb 

circular plasmid was considered a good candidate for a temperate phage genome because 

of the ubiquity of the highly conserved molecule among the Lyme disease spirochetes 

and, indeed, many other members of the Borrelia genus (35,42, 43, 68, 164).

There are many features of the cp32 family that are consistent with the hypothesis 

that these plasmids are prophage genomes (37 ,42 ,43). The conserved order o f the genes 

of all known cp32s (37,42) is similar to other phage families (39). The length of the 

DNA packaged into the procapsid of a tailed bacteriophage, as with some viruses, is 

restricted by the head size, and falls within a relatively narrow range (2, 55,98, 112).

The 32-kb circular molecules all fall within a range from 29.8 kb to 30.9 kb (mean = 30.5 

kb) (3 7 ,4 2 ,4 3 , 176). There is also evidence of recombination in at least one locus 

(containing the ospE, ospF, and elp homologs) on the cp32s (167, 172), suggesting lateral 

gene transfer has occurred among these plasmids. This gene transfer could be mediated 

from different cp32s within the same cell, by phage transduction o f alternate cp32s within 

a population of cells, or by some other, as yet unknown, mechanism.
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1 3  A model for the genomic structure o f the prophage.

Using the data we have presented on <(>BB-1, the hypothesis that blyA encodes a 

holin (see below), and limited sequence homology with a known phage protein,

Sherwood Casjens has proposed a model for the genetic organization o f cp32 as a 

prophage [(37); refer to Figure 28]. Two genes on cp32, BBP42 and its paralogs and 

blyA (BBP23) and its paralogs, may be part of a phage late operon. P42 and paralogs are 

similar to orf26 o f the Streptococcus thermophilus temperate phage <(01205 (42, 156).

The function of this gene has not been studied, but the gene lies between genes with 

homology to the small terminase subunit and portal genes of Bacillus subtilis phage SPP1 

(47, 58, 74, 175), the locus that usually corresponds to the large terminase subunit in 

known tailed bacteriophage genomes (39, 78). These gene products play a role in the 

packaging of the DNA into the procapsid (74, 175). The orf26 protein of the 

Streptococcus thermophilus temperate phage <(01205 and the P42 protein of B. 

burgdorferi cp32s are likely to encode the large terminase subunit. blyA (P23) and its 

paralogs encode a putative holin, as discussed below.

Both of these genes lie in locations on the cp32 plasmids that are consistent with a 

‘late operon’ of a temperate phage. The longest contiguous block of genes on the cp32s 

without assigned function is from P41 through P26 (see Figure 28). This includes 28 

genes, all transcribed in the same direction and each having a paralog on every cp32. P42 

is the second gene in this regulon, exactly where it would be predicted to be based on the 

late operon gene orders of other bacteriophages (39, 78). blyA (P23) is at the 3 ’ end of 

the gene cluster, again, in a predicted location (39, 191, 192). If these genes
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Figure 28. Map of cp32-l, a representative o f the B. burgdorferi strain B31 32-kb 

circular plasmids. The putative late operon of the bacteriophage runs from P41 clockwise 

through P26. BBP23 is the blyA paralog and BBP42 has homology to orf26 of S. 

thermophilus 001205. Both of these genes lie in their predicted locations based on the 

late genes of other temperate bacteriophages. BBP32 has homology with partitioning 

genes of other plasmids. The restriction map o f cp32-l and the dominant phage genome 

of 0BB-1 are different, although the gene order is the same. The positions of the probes 

used on the dominant phage genome (Figures 11 and 12) are shown in their location on 

cp32-l in bold. The map was generated using Mac Vector based on sequences from the 

complete genome (42, 68,114).
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are part o f a late operon (or regulon) o f the phage genome, then a prediction can be 

made that they would not be expressed during the lysogenic state. In fact, the very low 

levels o f expression of the blyA gene and a P26 homolog from B. burgdorferi strain 297 

(P26 and blyA are predicted to be on the same operon and they appear to be co

transcribed) during normal growth of B. burgdorferi has been demonstrated [(75, 121); 

Figure 18C]. We have also demonstrated an increase in the expression of this transcript 

after treatment with MNNG that is correlated with an increase in phage release (Figure 

18C). Only 102 to 103 holin molecules are required for cell lysis, so tight regulation of 

the expression of these proteins is critical (191).

Other identified proteins encoded on the cp32s appear to be host-related. Those 

genes or gene families that appear to be expressed in culture (or in the host) include the 

aspE-paralogs, ospF-paralogs, elp, rev, bdr, and mlp genes (5, 32, 35, 64, 73, 107, 121, 

128, 154, 166, 169, 172, 190, 194, 195). Bacteriophage often encode proteins that are 

synthesized during lysogeny and are involved in host pathogenesis, virulence or 

maintenance, and there are examples o f bacteriophage that encode host genes as part of 

the late operon (49, 115, 116). The ospE/ospF/elp (erp) loci and some of the bdr  genes 

are the only host-expressed genes that are in a location that could include them in the 

putative late regulon of the phage (35, 42, 128, 169, 176, 194).

There are also genes (BBP32 and heterogeneous paralogs) that are homologous to 

partitioning genes found on plasmids in other bacteria (16, 32 ,42 ,43 , 167, 168, 176, 

196). The only other extensively studied temperate phages with plasmid prophages, PI 

and N15, both carry genes homologous to P32 o f cp32 (1, 123). The heterogeneity 

associated with P32 and its paralogs may be a clue to the mechanism by which B.
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burgdorferi can replicate and partition these homologous plasmids without 

incompatibility observed when homologous plasmids are replicated and partitioned in 

other bacteria (9, 22, 32, 167).

Comparing the maps o f the <]>BB-1 genome from CA-11.2A (Figures 12B and 25) 

and cp32-l from B31 (Figure 28) leads to a few provacative observations. The kanR-gene 

has been inserted in the CA-11.2A paralog of BBP31, adjacent to the putative 

partitioning protein, P32. This is outside the putative late phage genes, and the disruption 

of this gene should have little effect on packaging and processing o f the <j>BB-l DNA.

The most likely effect of the disruption of this protein would be in the partitioning of the 

plasmid during the lysogenic stage as partitioning genes are usually clustered together 

(9). We have observed no loss o f this plasmid in transductants that have been passaged 

more than 20 times in the absence of selection (data not shown). Either this protein is not 

part of the partitioning apparatus, or the partitioning function associated with this protein 

can be provided in trans by one of the other cp32s that contain a functional paralog of 

P31.

There are also areas of remarkable similarity between the restriction maps of the 

two plasmids, particularly in the highly-conserved region. For example, the cp32- 

specific probe 4 is found on an identical-sized Pstl-Spel fragment on both cp32-l (B31) 

and the dominant CA-11.2A cp32. As probe 4 is highly conserved on all known cp32s, 

the similarity is not surprising, but the fact that this region of high sequence similarity lies 

within the putative phage late genes does not escape our notice. Conversely, the inability 

of any of the specific B31 cp32-probes to hybridize with the CA-11.2A plasmids might 

be expected. The region of high diversity needed to segregate homologous B31 plasmids
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from each other would be a region that is likely to be even more diverse in another 

strain. Most of these specific probes hybridize within the locus that encodes the variable 

OspE/OspF/Elp (Erp) lipoproteins (43, 169).

7.4 Processing of the lysogenic prophage.

We have demonstrated that the genome of <|>BB-1 is a linear double-stranded 

DNA molecule that arises from a circular lysogenic prophage (Figures 2 and 5). The 

mechanism by which this processing occurs for <j>BB-l is not yet understood. Clues to 

the mechanism may lie in the ends of the phage genome, although the exact nature of 

these ends remains undefined for 6BB-1.

There are three broad classes of double-stranded phage genomes: (1) molecules 

with unique ends and cohesive, single-stranded extensions, like those of coliphage X (79); 

(2) molecules with unique ends with double-stranded terminal repetitions, exemplified by 

the T-odd phages like T1 (103); and (3) molecules with circularly permuted ends and 

terminal redundancy, such as phage PI (89) and the Salmonella phage, P22 (124).

Circular permutation means that, in a population of phage, every genome does not have 

the same processing site generating the packaged linear phage genome. Most tailed- 

bacteriophages fall into this third class (2).

Figure 29 is a diagram illustrating what would be expected o f a restriction digest 

of a linear phage genome if the ends were (a) circularly permuted and non-specific (such 

as the coliphage PI) or (b) specific and unique ends (exemplified by X phage). The ability 

to visualize overlapping fragments o f the complete dominant <f>BB-1 genome 

demonstrates the absence of a specific, unique cut site generating the ends, consistent
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Figure 29. A model for using restriction digests to determine the processing of the 

prophage genome: circular permutation or a specific cut site? When digesting a linear 

molecule that has been generated by processing (P) from a circular molecule, if the 

processing is random (or semi-random) (a), then the restriction pattern (with enzyme c) 

will be consistent with a circular molecule (all fragments are visualized by the probes 

[black and hatched boxes], because none are preferentially absent due to non-restriction 

enzyme cutting). If the processing is specific (b), then hybridization with these probes 

will no longer be sufficient to visualize all o f the joining fragments that generate a 

circular map. When the data from several digests are compiled, a unique cut site will be 

evident because all maps will align at the same site. If the processing is random, or semi

random, then the restriction maps will not align at a single cut site (see Figure 12A).
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with the results from (a) (Figure 11). Additionally, the recapitulation o f a 30-kb 

circular molecule from the digest o f linear phage DNA (Figure 12) indicates that the 

<j>BB-l genome is circularly permuted (2).

Based on the evidence, the genome o f <j>BB-l can be classified in the category of 

the third type of double-stranded linear phage chromosomes and several generalizations 

about (j)BB-l may be true, based on what is known for other phages from this class. The 

most well-defined model for a lysogenic prophage that is maintained as an 

extrachromosomal element is bacteriophage PI o f E. coli (89). Bacteriophage PI is one 

of the largest phages known, with a genome of about 90 kb (89, 193). When packaged, 

the DNA of infective virions possesses an -10% terminal redundancy and is cyclically 

permuted (89, 193). This cyclical permutation arises from processive ‘headful’ 

packaging, the model that was first proposed for the packaging o f T4 DNA (170). This 

model has subsequently been used to explain the packaging of a number of viral DNAs. 

The model involves several steps: (1) rolling circle replication late in viral infection 

leading to concatemers of monomeric viral DNA; (2) initial cleavage of the concatemeric 

DNA at a unique site [for PI this occurs at the pac  site (163)] or many different sites; (3) 

packaging of the phage DNA from the cut end into the viral capsid until the head is full; 

(4) cleavage of the packaged DNA from the rest o f the concatemer; (5) reinitiation of a 

second round of DNA packaging from the end generated by the headful-mediated cut 

(163).

For bacteriophage PI, the processive headful packaging continues for three or 

four viral units. Since each genome has ~10% terminal redundancy, the permutation of a
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population of virion DNAs includes about 30 to 40% of the genome starting at the pac 

site. That is, the processing site at which the circular PI prophage is converted into a 

linear phage genome occurs within ~30 kb of the pac  site. In contrast, P22 has only -2% 

terminal redundancy for each monomer (124, 179) and packaging from the concatemer 

continues through a maximum of ten viral units, such that the processing site occurs 

within 20% (-5  kb) of the analogous pac  site (180).

Although we have not yet demonstrated terminal redundancy directly at the ends 

of the B. burgdorferi phage genome, there is evidence for concatemeric phage DNA 

formation and possible terminal redundancy, supporting the headful packaging model for 

the processing and packaging of <j>BB-l DNA. The size of the phage DNA has been 

determined as 32.7 kb by electron microscopy (102), 32.3 kb by regression analysis of 

phage DNA resolved by conventional field electrophoresis (137), and 31.3 kb by analysis 

of phage DNA resolved by FIGE in this work (Figure 13). These sizes are larger than the 

actual size for any of the known cp32s [which are 30.3 ± 0.5 kb (42, 176)]. Despite the 

smaller size of the <{>BB-1 DNA determined in this work, the genomic DNA is slightly, 

but consistently larger, than the linearized cp32s from the CA-11.2A cp32 population 

(Figure 13, lane 2). If <(>BB-1 DNA is packaged into procapsids by headful packaging, 

then the larger size of the phage genome is due to the terminal redundancy of the phage 

genome. This redundant DNA may play an important role in the circularizing of the 

linear phage genome, as is the case for phage PI (86, 150).

In addition to the terminal redundancy present in all bacteriophage genomes that 

undergo this type of packaging, the headful-packaging model requires the formation of
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large concatemers o f phage DNA units. When DNA from induced cultures of B. 

burgdorferi CA-11.2A was resolved by two-dimensional electrophoresis, large DNA  

molecules that could correspond to open circular and linear multimers of phage DNA  

could be visualized by Southern hybridization with cp32 specific probes (data not 

shown). The presence of these putative concatemers has not been confirmed by pulse- 

field electrophoresis, electron microscopy or CsCl-gradient purification.

There are two models (Figure 30) for the processing and packaging of 

concatemers of phage DNA that can lead to circular permutation, and neither are 

excluded by the headful packaging model. The two models, sequential packaging from a 

unique start site (like PI; Figure 30, a) or random packaging o f phage units from a large 

concatemer (like T4; Figure 30, b), are difficult to distinguish by restriction digest 

mapping in B. burgdorferi. The region in which the processing occurs (generating 

circular permutation) is usually under-represented (sub-stoichiometric) when compared to 

regions of the phage genome that are not found at the ends (90). However, since B. 

burgdorferi cells contain more than one cp32, and (j>BB-l has more than one phage 

genome, there are always several sub-stoichimetric bands, representing minority cp32 

prophages. The results of one experiment, shown in Figure 14, indicate that all fragments 

of phage DNA are end-labeled equally, suggesting that all fragments contain an end, 

which would be consistent with random processing from a concatemer. Another 

possibility, however, is that the concatemers o f 0BB-1 DNA are large. In this case, the 

processing might encompass the entire molecule, giving the appearance o f  random 

processing. We know of only one bacteriophage (the lytic phage T4) that packages (or 

even appears to package) the phage genome randomly from a concatemer (2), and the
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Figure 30. Two models for packaging phage genomes from prophage concatemers. (a) 

Diagram showing that if the concatemer is long enough for only a small number of 

headfuls of DNA to be generated and the terminal redundancy is sufficiently small, 

sequential encapsidation from a unique starting site results in a restricted distribution of  

ends (restricted permutation), (b) Random encapsidation from a concatemer results in a 

random distribution of ends (random permutation). Adapted from Tye, et al. (180).

labeling of the multiple <j>BB-l genomes, as well as the labeling of nicked DNA and 

incomplete digestion are more likely reasons for the apparent random permutation. We 

are currently attempting to repeat this experiment under more rigorously controlled 

conditions.
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7.5 Induction of the prophage.

The reversion o f a lysogenic prophage from quiescence to a lytic state is often 

achieved by stressing the host bacterial cell by chemical or physical means (25). Prior to 

this work, bacteriophage of spirochetes have been produced from cells treated with 

mitomycin C or ciprofloxacin (33, 87, 117). <|>BB-1 does not appear to be consistently 

inducible with either o f these chemicals, although we have observed slightly enhanced 

phage release from one culture of B. burgdorferi CA-11.2A treated with mitomycin C 

(data not shown). MNNG is the most reliable <J>BB-1 prophage inducer that we have 

used. Previously, MNNG has been used to generate mutant cyanophage (7, 142) and 

mutant mycobacteriophage (151), to induce prophage X from recA mutants of E. coli 

(189), and to induce prophages through mutations in Haemophilus influenzae (11, 27).

MNNG is a DNA alkylating agent and a potent mutagen. The proposed three-step 

model for the mechanism of MNNG mutagenesis is (1) the production o f miscoding 

lesions on the DNA, especially 06-methylguanine at specific sites as determined by 

context (60), and the induction of methyltransferase; (2) the generation o f DNA 

sequences in which 06-methylguanine is paired with thymine; and (3) the conversion of 

the abnormal base pair to an adenine-thymine pair, generating a transition mutation (145). 

Presumably, the lesions on the DNA at these locations or at different locations (65) 

activates the SOS response, initiating the induction of the prophage (see below). Due to 

the high rate of mutagenesis, and the high toxicity, associated with the use of this 

chemical, MNNG is not regularly used on those systems where other agents are as 

reliable for inducing prophage. Future research into the molecular nature o f induced
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<j>BB-l must take into account that mutation frequencies as high as 20% have been 

observed in the DNA of cells treated with MNNG, affecting the prophage DNA as well 

as the cellular DNA (101).

Induction of prophage has been best characterized for coliphage X. Ultraviolet 

radiation is the inducing agent of choice in this system, but the principles o f prophage 

induction are thought to be the same for other inducing agents. In short, damage to host 

DNA by a mutagen activates the SOS repair pathway. The activation of the SOS regulon 

occurs when recA mRNA is increased and the RecA protein mediates the cleavage o f the 

LexA repressor. Germane to our understanding of induction is that the RecA protein is 

also a mediator o f the cleavage of the X cl repressor molecule (and the repressor 

molecules o f many other temperate phages) (92, 99,113, 129). The cleavage of the 

repressor molecule allows derepression of the genes involved in lytic infection (69).

There are also RecA-independent pathways of X prophage induction, although these are 

not as well understood (132, 189). As well as playing a role in initiating the SOS 

response, MNNG must also have a RecA-independent mechanism for induction, as this 

chemical has been used to induce prophage X from recA mutants of E. coli (189).

Not all lysogenic prophages are inducible. Bacteriophage P2, which has a life 

cycle much like X, is not artificially inducible, although spontaneous induction does occur 

at low levels (24, 25). The repressor molecule o f this bacteriophage lacks the pair of 

amino acids that is responsible for the destabilization of the X repressor molecule and 

apparently is not susceptible to RecA-mediated cleavage (25, 143). Instead, this 

bacteriophage requires satellite phage P4 to co-infect the host cell and provide the
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derepressor in trans (24, 100). Bacteriophage Mu, one of the most efficient 

transposons known, is also an uninducible temperate virus. Most o f the work done with 

phage Mu uses a cts mutant, a bacteriophage with a temperature-sensitive repressor 

molecule (25, 93, 184). We will return to this in reference to <j)BB-l and our system 

below.

The natural or induced release of a temperate prophage is often associated with a 

decrease in cell density during the ‘lytic burst’ (25). Barbour and Hayes have suggested 

that this phenomenon might account for the periodicity seen during early attempts at 

cultivating Borrelia (19). We have never witnessed a dramatic decrease in cell density 

associated with the release of <j>BB-l from B. burgdorferi CA-11.2A. Preliminary time 

course studies (Figure 7) have shown that during the recovery period following MNNG 

treatment there is a modest 16% decrease in cell density between 24 and 36 h, and 

another slight 20% decrease between 48 and 60 h (Figure 7B; dashed line). Both o f these 

apparent decreases are relative to the densities at the previous time point. The drop in 

cell density of the treated culture at these time points could be related to cell lysis by the 

phage at 36 h and again at 60 h (Figure 7A), but there is no associated decrease in the cell 

density o f the untreated cells at 36 h when phage is spontaneously released (Figure 7). 

Even if the decrease in cell density of the treated culture is due to lysis by <{>BB-1, this 

decrease is still less than the 20 to 50% drop in cell density regularly observed with 

mitomycin C-treated B. hyodysenteriae that produce VSH-1 (87).

There are two possibilities for the absence o f a dramatic lysis event (>50% 

decrease in cell density) during phage release: (1) the phage is exiting the cell by some
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means other than lysis, or (2) the method of inducing prophage that we have described 

is inefficient and only a small population of cells are releasing phage at one time. All 

known double-stranded tailed bacteriophages exit the cell by lysis (2, 191, 192). 

Additionally, there is a correlation between the increased synthesis of a possible holin- 

like system encoded by the phage (50) and an increase in phage release (Figure 18).

Taken together, this evidence suggests that 0BB-1 exits by cell lysis.

There is strong evidence suggesting that the second option, the inefficiency of 

MNNG-induction, is a viable hypothesis. O f the more than twenty Borrelia isolates that 

have been treated with MNNG, only three have demonstrated the ability to release 

quantifiable amounts of <|>BB-1 under the conditions we have described: B. burgdorferi 

B31-UM, B. burgdorferi CA-11.2A, and B. bissettii DN127 (Figure 8). We have 

designated our strain as B31-UM to separate this strain from other B3 Is that are 

ostensibly the same strain, but appear to have differences (such as in their plasmid 

complement, including cp32s) that could lead to physiological dissimilarities (43, 68). 

Among the strains tested were two low passage B31 strains and the uncloned parent of 

C A-11.2A, CA-11. We have found no low passage isolate that produces <j>BB-l. We 

have seen prophage induction in a few uncloned high passage CA-11 cultures, although 

this does not occur regularly and we have not observed prophage induction from the low 

passage isolate. The plasmid content of the low-passage CA-11 and CA-11.2A appears 

to be virtually identical, so the difference in phage release between these two isolates is 

striking.
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CA-11, a California tick isolate, synthesizes outer surface protein C (OspC) 

constitutively (109, 149). CA-11 was cloned by plating on solid medium and the CA- 

11.2A clone was selected based on the low synthesis of the outer surface proteins A 

(OspA) and B (OspB) (109, 130). The synthesis o f OspC is inversely correlated with the 

synthesis of OspA and B, with OspC synthesis upregulated in the mammalian host. The 

synthesis of these proteins appear to be regulated, at least in part, by temperature- 

mediated changes in supercoiling (6, 148). The cellular variation that causes the 

constitutive upregulation of OspC may be related to the general control of protein 

synthesis or degradation, or to homeostatic regulation of DNA supercoiling. A change in 

DNA supercoiling would have a global effect, with altered ospC  expression as the most 

noticable attribute. Whatever the cause, perhaps this mutation also makes phage 

production more likely in the clones of strain CA-11. We have tested four other cloned 

strains of CA-11 and each naturally produces phage at some level (data not shown). The 

reasons that the uncloned low-passage CA-11 does not produce phage remain unclear.

We return now to the fact that not all tailed-bacteriophages are inducible. We 

have considered the possibility that the wild-type prophage of <J>BB-1 is not inducible or 

that the <{>BB-1 prophage in a wild-type host is uninducible, or is naturally inducible at 

low levels, like P2. Currently, we can detect phage release at only mid to high 

production (>106 phage ml'1). This titer requires a fairly large burst size, a size that may 

not be achieved in low passage isolates that have not yet become adapted (or mutated) to 

culture conditions.
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Additionally, we cannot forget the natural epidemiology o f B. burgdorferi 

when considering the conditions under which <j>BB-l is released. BSK-complete, while a 

suitable laboratory medium, is only a poor mimic of the environment that Borrelia would 

encounter within a mammalian host or tick vector. Because of the stress induced by 

culture conditions on low passage isolates, these cells may not be physiologically capable 

of generating enough packaged virions for a large lytic burst.

The density of B. burgdorferi in a mammalian host is very low; there are often not 

enough bacteria to culture from infected hosts (146). B. burgdorferi has the highest cell 

density in the tick vector and the greatest opportunity to interact with other cells and even 

other strains (146). The opportunity for <)>BB-1 to find a suitable host for infection would 

increase greatly under these high-density conditions, even at the lower titer achieved by 

spontaneous induction of the prophage. The study of bacteriophage release, as well as a 

number of other physiological processes, in the invertebrate vector remains a fertile area 

of research.

Higher passage isolates are more likely to release <{>BB-1 than lower passage 

isolates. Even in the high-passage strains, though, the induction may not be complete due 

either to the penetrance of the putative mutation or the multi-copy nature of the cp32 

plasmids. No work has been done showing what effect the protein products (such as a 

repressor) of the various cp32s may have on each other in trans. In such a complicated 

system composed of many different plasmids and possible prophages, we can reasonably 

assume that a whole class of mutants can arise that affect different parts of the phage life 

cycle. Accordingly, we have documented strains that have almost every phenotype
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possible with regard to phage production, transduction and prophage induction (Table 

9). We have noted that the transduction of a strain with <j>BB-l/foin* (C A-11.2A) does 

not confer the typical CA-11.2A/<|>BB-1 phenotype on that cell (note particularly 1A7 and 

the transductant, TR5, which produce no phage under the conditions that we have 

described). The cause o f prophage derepression may reside in the CA-11.2A host 

genome or on another cp32 and not on the <j>BB-l (CA-11.2A) prophage.

Table 9 .0BB-1 -related phenotype of several strains of B. burgdorferi
Strain1 Natural producer2 Inducible Transducible3

B31-lM lT(low passage) no no yes
B31-UM no yes yes
CA-11 (low passage) no 4no no
CA-11.2 A yes yes yes
1A7 (high passage) no no yes
DN127 yes yes no

strains include those re levant to  our phage work, or different passage equivalen ts, all o th er strains are

negative for all three phenotypes; 2 production on  a regular basis (>80%  o f  the tim e) as assessed by EtBr- 

stain o f  D N A ;3 transduction w as attem pted with CA-11.2A <)>BB-lAfca/i* a t a m ultiplicity  o f  infection o f  

1000:1; 4 as the passage num ber increases, the likelihood o f  prophage induction  increases

The temptation to suggest that a comparison o f the strains from Table 9 might be 

an important step to understanding the life cycle of $BB-1 is moderated by the 

knowledge that such a study would be almost prohibitive in its scope. The multicopy 

nature of the prophage, the large number of molecules of DN A  in the B. burgdorferi 

genome and the small but perhaps significant sequence variability between each strain 

would enhance the difficulties. Additionally, the cp32/prophage correlation may not be 

absolute, with only one or more of the complement of B. burgdorferi B31 and CA-11.2A
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cp32s being the actual prophage, and the others being cryptic prophages incapable of 

productive infection, although most, if not all, cp32s are packaged. If the mediation of 

prophage repression is effected in trans, then a careful analysis of the entire genome of 

each strain might be required. However, the ability to study the molecular biology of B. 

burgdorferi is not yet at this level. Identifying a repressor molecule o f <(>BB-1 will be an 

important key to understanding the $BB-1 life cycle.

7.6 Phage proteins.

Identifying the structural proteins will be critical to further characterizing <j>BB-l 

and to understanding the phage life cycle. One possible explanation for the stability of 

the phage production phenotype of a strain following transduction is that the introduced 

cp32 molecule is incapable of making new phage. In this model, the capsid visualized 

(Figure 4) would actually be a specialized transducing phage that does not encode its own 

proteins, which would be encoded somewhere else on the B. burgdorferi genome. We 

know of no bacteriophages that carry out specialized transduction by packaging a 

completely non-phage related genomic element specifically, but we could see the 

advantages that the subversion of this system would have for the host organism. Such a 

system could serve as a good mechanism for generating diversity in outer surface 

proteins. The mechanism by which such a bacteriophage would be repressed would not 

be on the packaged material (the repression and derepression elements are on another 

molecule in the genome entirely). This could conceivably prevent super-infection 

immunity, allowing multiple ‘phage’ genomes to enter the cell, thus generating even 

more diversity. Although our data do not support such a model, and Ockham’s Razor
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would favor the simpler alternative, we also cannot deny that this explanation answers 

several questions about our observations, as well as raising many new ones. With the 

knowledge that there are possibly three or four more reported bacteriophage-like 

particles, associated with B. burgdorferi (77, 117, 137), we can envision a scenario that is 

a hybrid of the ‘complete specialized transduction’ hypothesis and the more likely ‘cp32 

as a lysogenic prophage’ hypothesis.

In this hybrid model, similar to P2, the repression of <J>BB-1 is not associated with 

a cp32 but with another lysogenic prophage or even a cryptic prophage. This prophage 

would no longer be capable of productive infection (which may also apply to all but a 

few of the cp32s), but may still synthesize the necessary repressor or derepression 

elements from its integrated site. This is an attractive model because we could 

hypothesize that the repressor/derepressor locus on the satellite phages is mutated in CA- 

11.2A, but, as this mutation would not be transduced with the phage DNA, the <j>BB-l 

(CA-11.2A) prophage would be repressed in another, non-mutated strain, which is 

consistent with the data. One of the satisfying features of the hybrid model is that the 

scenario of cp32 as a prophage fits conveniently with the data and is not dismissed, but 

modified to include a trans-acting factor. In the absence of identifying any structural 

genes or the repressor element on the cp32 molecule, all of these arguments remain 

speculative.

There are no proteins on the cp32 molecules that are homologous to structural 

proteins o f known tailed phages. However, because of the divergent evolution of 

bacteriophages with their hosts from other phages and their hosts, phage structural
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proteins, while often resembling each other in their tertiary or quaternary 

conformations, do not share much sequence similarity at the amino acid sequence level 

(2, 78).

We have proceeded in our investigation with the hypothesis that the most 

abundant protein in any bacteriophage or virus sample should be the head protein because 

of the number of subunits (capsomers) required for the formation of the capsid (2, 55). 

Our search for structural proteins of has been hindered by the serum-based

protein-rich medium that is necessary to support cell growth and phage release. We have 

used multiple CsCl-gradients to remove some o f the non-specific proteins and to increase 

the recovery of clean phage DNA. The only protein that was abundantly present in these 

purified samples was an apparently ~70-kDa protein (Figure 15). There are 

bacteriophages that have covalently cross-linked capsid proteins that form large protein 

multimers (120). Perhaps <]>BB-1 does not have complete covalent cross-linkage, but 

covalently dimerizes two or three capsid proteins.

We have also developed a low-protein medium that is capable o f supporting 

modest bacteriophage release. Although we have not successfully identified any proteins 

that are phage-specific, we have made a preliminary identification of what appears to be a 

unique protein present in precipitated supernatant samples containing phage (Figure 17). 

This protein is ~25 kDa, which is slightly smaller than the average head protein (30-35 

kDa) of bacteriophages, but is still within a reasonable range. As there is no increase in 

this protein with the sample that was applied to multiple CsCl-gradients, the significance 

of this protein is unknown. There are smaller quantities of the 25-kDa protein present in 

cultures o f B. burgdorferi B31 and C A -11 (data not shown), neither of which produce
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phage in large quantities. The protein is likely associated with the bacterium rather 

than the bacteriophage. An association with the bacterium would explain the absence of 

this protein in CsCl-purified phage samples, as a protein of that size would migrate 

differently through the gradient than the large phage head would. Efforts are currently 

underway to purify enough of this protein for N-terminal sequencing.

Guina and Oliver had previously cloned two genes, blyA and blyB, from B. 

burgdorferi (75). The gene products of blyA and blyB appeared to encode a hemolytic 

activity (75). These genes were initially identified as two open-reading frames (ORFs) of 

a four-ORF operon conserved on the cp32 molecules and located in close proximity to 

the region of cp32 encoding a group of variable lipoproteins (the mlp loci) (121). The 

function o f the BlyA and BlyB proteins was initially proposed as a possible virulence 

factor important for the initial invasion of mammalian cells by B. burgdorferi (75). 

Subsequently, Damman and Oliver have shown that the cryptic E. coli hemolysin SheA 

was responsible for the cell lysis that had been attributed to the blyA  and blyB gene 

products (50).

Except for the filamentous phage, all known bacteriophage require lysis of the 

cells for their release (192). Damman and Oliver have found that the predicted structure 

of BlyA was very similar to bacteriophage-encoded holins. Holins, found in all known 

tailed-bacteriophages, are small proteins that form stable, non-specific pores in the 

membrane, allowing an endolysin access to the peptidoglycan (2, 191, 192). BlyA can 

complement a defect in the S gene of phage X (50). Gene S is the holin responsible for 

the release o f the phage-encoded endolysin into the periplasm (191, 192). Although no 

endolysin has yet been described for <|>BB-1, the presence of a putative phage-specific
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holin encoded on cp32, provides support for the hypothesis of cp32 as a prophage (as 

discussed above).

The exact role of BlyB is unknown, although the correlation between the 

synthesis o f both BlyA and BlyB suggests that BlyB may have some accessory role, 

either as a regulatory factor, an assembly factor or possibly an endolysin (50). We have 

demonstrated that BlyA and BlyB syntheses are increased as a consequence of MNNG 

treatment, and this correlates with phage production (Figure 18). However, in the 

experiment shown, the syntheses of these proteins do not correlate with each other, with 

the most BlyA being made in CA-11.2A, the reliable phage producer, and more BlyB 

being synthesized in B31, which does not produce much phage (Figure 18B). Whether 

this was a physiological phenomenon or an experimental artifact was not apparent. BlyB 

may have no relationship with BlyA (and 4>BB-1), other than being encoded on the same 

operon. blyA and blyB are thought to be cotranscribed (75, 121) and Northern analysis 

suggests that the transcript is more abundant in B31 than in CA-11.2A. The amount o f  

RNA recoverable from B31 is much higher than for CA-11.2A, and this may account for 

much of the difference, but we cannot exclude the possibility that there is translational 

control o f  the synthesis of the putative holin, allowing the strain with the least transcript 

to produce the most BlyA.

7.7 Transduction of the kanR-marker by 0BB-1.

The cp32s and homologous sequences are ubiquitous throughout the Lyme 

disease spirochetes and many other members of the Borrelia genus (42,43, 68, 164). 

Borrelia presents a problem when we define a host range because most of the members 

of the genus already contain plasmids that are homologous to the lysogenic prophage of
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0BB-1. The host range for <)>BB-1 would seem  to include all known B. burgdorferi 

sensu lato species. Our efforts to cure B. burgdorferi o f cp32s by chemical or electrical 

means have been unsuccessful (data not shown). We know of no strain of B. burgdorferi 

that carries fewer than three cp32s.

Prior to this work, no mechanism for lateral gene transfer, such as conjugation, 

had been demonstrated in Borrelia. To demonstrate the ability of 0BB-1 to infect B. 

burgdorferi cells and transduce DNA, we inserted an antibiotic resistance marker into 

one of the lysogenic prophage genomes. Currently, there are only two available 

antibiotic-resistance markers for B. burgdorferi, one that confers resistance to 

coumermycin Ai (gyrff) (141), and a recently developed marker that confers resistance 

to kanamycin (28). Coumermycin Ai resistance is generated by a point mutation in the 

extant gyrB gene (141). A cassette containing the gyrB  gene with the critical point 

mutation was used to demonstrate the first genetic transformation o f B. burgdorferi (140) 

and has been subsequently used for the insertional inactivation of genes on the 26-kb 

circular plasmid (29, 131,177, 178). A single cross-over o f a plasmid containing the 

gyrBr gene was used to introduce heterologous DNA into the chromosomal gyrB locus 

(165). The gyrB'-cassette was also used as a marker for the site-directed disruption of the 

B. burgdorferi gac gene (93), which encodes an unusual small DNA-binding protein (94).

A major disadvantage of using the gyrB' to disrupt genes has been the high rate of 

homologous recombination into the chromosomal locus of gyrB, instead of the targeted 

site (131, 139, 140). Our initial plan for <>BB-1 required inserting the gyrB'  gene into the 

Ndel site o f the phage DNA fragment clone 12SK (Table 2). We constructed a plasmid
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(analogous to pCE210) that contained both the phage DNA and gyrBr, and 

electroporated this plasmid into CA-11.2A. Previously, the transformation efficiency of  

the gyr/l'-insertion into the desired location has been reported to be about 0.4% (131,

177); however, we screened over a thousand colonies and were unable to isolate a single 

clone with the g yrff  integrated into a cp32 o f CA-11.2A.

Bono et al. (28) have recently developed a kanamycin-resistance cassette (kanR) 

using the kanamycin-resistance gene from pOK12, a small pUC-derived plasmid (181), 

expressed from the B. burgdorferi promoter for flgB  (72). The kanR-cassette, because of  

the divergence from extant B. burgdorferi sequences, decreases the high level o f  

background homologous recombination and increases the efficiency of recombination 

into the targeted site. With this marker inserted into a fragment o f phage D N A  and 

electroporated into CA-11.2A cells, we screened five colonies (out of several hundred) 

and all five contained the fom^-insertion into cp32 (Figure 20).

A detailed analysis of the particular cp32 plasmid containing the kanamycin- 

cassette has not been done. However, by restriction mapping and PCR analysis of VR1, 

we surmise that the &zw*-cassette is inserted into the cp32 that is the dominant phage 

genome (Figures 24, 27 and data not shown). 0BB-1 is capable o f packaging the plasmid 

containing the kanR-cassette and appears to do so from the transformant with the same 

frequency as the phage packages the dominant phage plasmid from parental C A .l 1-2A 

(Figure 10 and data not shown).

The ability of $BB-1 to package a cp32 larger than normal may be more evidence 

that the terminal redundancy at the ends of the phage genome is at least -1 .3  kb, the size
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o f the inserted kanR-cassette. We hypothesize that the terminal redundancy of the 

0BB-1 genome, which may be as large as 1.5 to 2 kb based on sizing data (102, 137, 138) 

(Figure 13), may be smaller on the 4>BB-1 lkanR genome, but still large enough to allow 

the establishment of infection as demonstrated by transduction. For phage PI, 

circularization upon injection into the cell, which is a prophage-mediated event, requires 

the terminal redundancy at the end o f the genomes for recombination (86, 150). 

Extending this hypothesis for $BB-1, any amount of DNA that is smaller than the 

terminal redundancy can be introduced into the prophage genome without a loss o f  

packaging efficiency. Any insertion [such as the 2.1-kb gyrBf (131)] larger than the 

terminal redundancy might be packaged. However, with no terminal redundancy the 

phage genome might not be able to recircularize in a new host. In this case, 

recombination into an existing cellular cp32 locus prior to degradation may be possible, 

which would rescue the introduced phenotype.

We have demonstrated transduction into three different strains o f B. burgdorferi, 

including both low (non-inducible) and high (inducible) passage B31, the first direct 

evidence that lateral gene transfer can occur in B. burgdorferi. The number of strains that 

can be transduced by 0BB-1 is few considering the large number of strains that we have 

tested (see Table 4). The ability of $BB-1 to transduce the antibiotic-resistance marker 

into a strain appears to be unrelated to the ability of that strain to produce phage, since 

both low passage B31 and high passage 1A7 are transducible, but not inducible. The 

efficiency of transduction between different strains appears to be at least 100 times lower 

than transduction between cells o f the same strain and may play an important role in
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limiting transduction to other strains. Further support for this idea is the observation 

that <{>BB-1/fowi* (B31) is capable of efficiently transducing the marker into susceptible 

high and low passage B31 cells, but not back into CA-11.2A, the original source of the 

<1>BB-1/kanR. If the decrease in efficiency observed when transducing from CA-11.2A 

into B 31 was constant (that is, 100 times less efficient than transducing back into the 

same susceptible strain) whenever the phage moves between strains, such as when <J>BB- 

llkanR (B 31) must transduce the fom^-marker into CA-11.2A , then the transfer of the 

marker between B31 and CA-11.2A would probably require a titer o f phage higher than 

reasonably achievable for B31. We must also remember that the titer of the phage is 

determined only by the presence of DNA, and not by the number of infective particles. 

There is currently no assay for determining the titer of infective particles. In addition, we 

have no assay for evaluating the efficiency of establishing a new cp32 into a cell that is 

already carrying a number of these molecules.

We were surprised to observe even a small amount of DNA transfer between dead 

fozn^-cells and live susceptible CA-11.2A cells. BSK-complete has an inherent nuclease 

activity (unpublished observations) that would seem to prevent DNA transfer within this 

medium, unless by direct cell contact. Additionally, the killed cells were treated 

thoroughly with chloroform, which should lyse the cells, although some may have 

remained intact. As this transformation was prevented by the addition of proteinase K, 

we propose that this phenomenon may be due to bacteriophage remaining either 

internally or externally associated with the dead CA-11.2AJkanR cells. We have not yet
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tried this experiment with 1A7 TR5/AanR, which had either no, or substantially 

decreased, phage production.

Although the evidence is not conclusive, we believe that the <t>BB-l/faz/i* is being 

introduced as a discrete plasmid into the cell. Since the host cell loses a VR1 marker as 

well as gaining the <j)BB-l (CA-11.2A) VR1, this would suggest that displacement o f a 

host plasmid is occurring (Figure 24), although there are no obvious candidates 

discernible from the restriction maps (Figure 27). Perhaps the loss o f the host plasmid 

associated with the smaller V R ls is required first before the transduction o f the <|>BB- 

\lkanR. We are currently generating new clones o f  these strains to analyze the 

relationship between prior plasmid content and the ability to incorporate the <|>BB-l/foin* 

cp32. Alternatively, recombination o f the portion o f the <j>BB-l/far/i* (CA-11.2A) DNA  

into the variable site would result in the loss o f the smaller VR1.

We have demonstrated that other strains transduced with $&B-VkanR (CA-11.2A) 

now possess the variable region 1 (Figure 24), restriction fragments containing the 

cp32SKMfeI DNA (Figure 27), and restriction fragments containing the blyB  DNA (data 

not shown) from <|>BB-1 (CA-11.2A). Even if  this introduction of DNA was occurring 

via recombination into an extant locus, the stretch o f DNA just described encompasses 

over 12 kb, including the entire variable region, which contains all of the lipoproteins 

implicated in diversity. Whether the homologous region that includes the putative late 

phage genes was also introduced is not clear. Although the restriction maps may be 

modestly different, the gene order and content is conserved on all known cp32s, so 

whether this region remains intact (resident) or is introduced from <J>BB-1 has little effect
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on the cell. If the introduction o f the DNA is occurring through recombination, 

instead of discrete plasmid displacement, and the conserved region has not been 

recombined, perhaps this explains the stability of the phage-producing phenotype. That 

is, the ‘phage’ genes, at least the late ones, are still derived from the resident cp32s and 

would maintain the host phenotype for phage production. Because o f the conservation of 

this region within the resolution o f restriction digests, determining whether this DNA is 

resident or transduced <J>BB-1 is a difficult task.

Superinfection immunity, observed with most lysogenic prophages, apparently 

does not play a role in those B. burgdorferi strains that are transducible. Most 

commonly, as with X phage, this immunity is due to the presence of a repressor molecule 

that binds to the operator and prevents replication or integration of any incoming phage 

DNA that contains the same operator as the lysogen (25,95). Alternatively, 

superinfection immunity to related phages can occur by preventing adsorption of phage 

particles, preventing injection of the DNA, or digesting incoming phage DNA. With 

4>BB-1 we were able to introduce the phage DNA back into the lysogen and into other 

strains that already contain cp32s/putative prophages, suggesting that none of these play a

n

role in preventing the superinfection o f CA -11.2A by tyBR-Vkan .

We have discussed one possible reason why there might be no superinfection 

immunity conferred by the resident cp32 prophages ( ‘complete specialized transduction 

model’). A second possibility is that each cp32 has a different repressor molecule. This 

seems unlikely when considering the number of cp32s not only in an individual strain, 

but also among other strains. Perhaps there is a population of different repressor
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molecules, and each strain has a different complement of these molecules. This could 

be the reason that some strains cannot be transduced: they contain cp32s with an 

immunity region that prevents infection of <{>BB-1. With this hypothesis, strains B31 and 

1A7 would lack the repressor molecule that prevents 0BB-1 (C A .l 1-2A) infection. This 

does not explain, however, why the phenotype o f these transduced strains does not 

change. Also, consider that CA-11.2A can produce phage, thus contains the <(>BB-1 

prophage, but can also transduce DNA back to susceptible cells of the same strain 

containing this plasmid. CA-11.2A may have a mutation that affects the whole immunity 

region, which could explain not only the lack of superinfection immunity, but also the 

apparent constitutive partial derepression in the strain. A third possibility is that the 

kanamycin-resistance cassette recombines into the resident cp32 rather than infecting 

with a new cp32. Recombination of infecting temperate phage into the existing lysogenic 

prophage is sometimes observed in phage X (25).

We believe this work to be important not only to the study of B. burgdorferi, but 

also to the general study of bacteriophage molecular biology. Although our work will 

serve as a solid foundation, there remains much to be done with (j)BB-l. Because of the 

nature of the bacterial host, this phage has some very interesting properties that may give 

insight into not only the interactions between host and phage, but also how all phages 

evolve and interact with their hosts. As an example, we know of no other phages that 

have evolved to deal with multiple plasmid genomes and the absence of susceptible 

strains. Additionally, we have demonstrated a mechanism for lateral gene transfer that 

should be explored further to establish a role in the natural environment, for instance,
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during the clinical course of Lyme disease. We believe that further analysis o f <{>BB-1, 

the first bacteriophage of B. burgdorferi described at a molecular level, could have a 

critical role in the investigation of plasmid genetics, the development o f a genetic system, 

and the analysis of metabolic processes in these bacteria as a whole.
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Appendix A 

Abbreviations

bp base pairs

BPB bromophenol blue

BSA bovine serum albumin

BSK Barbour-Stoenner-Kelley medium

CBB Coomassie brilliant blue

CIP calf intestinal phosphatase

DNA deoxyribonucleic acid

EtBr ethidium bromide

F.C. final concentration

FIGE field-inversion gel electrophoresis

kb kilobase pairs

MBN Mung Bean nuclease

MNNG l-methyl-3-nitro-nitrosoguanidine

PAGE polyacrylamide gel electrophoresis

PCR polymerase chain reaction

PEG polyethylene glycol

PK proteinase K

PTA phosphotungstic acid

RNA ribonucliec acid

SDS sodium dodecyl sulfate

SM suspension medium

TEM transmission electron microscopy
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