90 research outputs found

    The Great Debate at "Melanoma Bridge", Naples, December 7th, 2019.

    Get PDF
    The Great Debate session at the 2019 Melanoma Bridge congress (December 5-7, Naples, Italy) featured counterpoint views from experts on five topical issues in melanoma. These were whether to choose local intratumoral treatment or systemic treatment, whether patients with stage IIIA melanoma require adjuvant therapy or not, whether treatment is better changed at disease progression or during stable disease, whether adoptive cell transfer (ACT) therapy is more appropriate used before or in combination with checkpoint inhibition therapy, and whether treatment can be stopped while the patient is still on response. As was the case for previous meetings, the debates were assigned by meeting Chairs. As such, positions taken by each of the melanoma experts during the debates may not have reflected their respective personal approach

    Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises

    Full text link
    Dynamics of an ensemble of NN-unit FitzHugh-Nagumo (FN) neurons subject to white noises has been studied by using a semi-analytical dynamical mean-field (DMF) theory in which the original 2N2 N-dimensional {\it stochastic} differential equations are replaced by 8-dimensional {\it deterministic} differential equations expressed in terms of moments of local and global variables. Our DMF theory, which assumes weak noises and the Gaussian distribution of state variables, goes beyond weak couplings among constituent neurons. By using the expression for the firing probability due to an applied single spike, we have discussed effects of noises, synaptic couplings and the size of the ensemble on the spike timing precision, which is shown to be improved by increasing the size of the neuron ensemble, even when there are no couplings among neurons. When the coupling is introduced, neurons in ensembles respond to an input spike with a partial synchronization. DMF theory is extended to a large cluster which can be divided into multiple sub-clusters according to their functions. A model calculation has shown that when the noise intensity is moderate, the spike propagation with a fairly precise timing is possible among noisy sub-clusters with feed-forward couplings, as in the synfire chain. Results calculated by our DMF theory are nicely compared to those obtained by direct simulations. A comparison of DMF theory with the conventional moment method is also discussed.Comment: 29 pages, 2 figures; augmented the text and added Appendice

    Quantitative assessment of the stent/scaffold strut embedment analysis by optical coherence tomography

    Get PDF
    The degree of stent/scaffold embedment could be a surrogate parameter of the vessel wall-stent/scaffold interaction and could have biological implications in the vascular response. We have developed a new specific software for the quantitative evaluation of embedment of struts by optical coherence tomography (OCT). In the present study, we described the algorithm of the embedment analysis and its reproducibility. The degree of embedment was evaluated as the ratio of the embedded part versus the whole strut height and subdivided into quartiles. The agreement and the inter- and intra-observer reproducibility were evaluated using the kappa and the interclass correlation coefficient (ICC). A total of 4 pullbacks of OCT images in 4 randomly selected coronary lesions with 3.0 × 18 mm devices [2 lesions with Absorb BVS and 2 lesions with XIENCE (both from Abbott Vascular, Santa Clara, CA, USA)] from Absorb Japan trial were evaluated by two investigators with QCU-CMS software version 4.69 (Leiden University Medical Center, Leiden, The Netherlands). Finally, 1481 polymeric struts in 174 cross-sections and 1415 metallic struts in 161 cross-sections were analyzed. Inter- and intra-observer reproducibility of quantitative measurements of embedment ratio and categorical asses

    Re-examining the relationship between audiometric profile and tinnitus pitch

    Get PDF
    Objective: We explored the relationship between audiogram shape and tinnitus pitch to answer questions arising from neurophysiological models of tinnitus: ‘Is the dominant tinnitus pitch associated with the edge of hearing loss?’ and ‘Is such a relationship more robust in people with narrow tinnitus bandwidth or steep sloping hearing loss?’ Design: A broken-stick fitting objectively quantified slope, degree and edge of hearing loss up to 16 kHz. Tinnitus pitch was characterized up to 12 kHz. We used correlation and multiple regression analyses for examining relationships with many potentially predictive audiometric variables. Study Sample: 67 people with chronic bilateral tinnitus (43 men and 24 women, aged from 22 to 81 years). Results: In this ample of 67 subjects correlation failed to reveal any relationship between the tinnitus pitch and the edge frequency. The tinnitus pitch generally fell within the area of hearing loss. The pitch of the tinnitus in a subset of subjects with a narrow tinnitus bandwidth (n = 23) was associated with the audiometric edge. Conclusions: Our findings concerning subjects with narrow tinnitus bandwidth suggest that this can be used as an a priori inclusion criterion. A large group of such subjects should be tested to confirm these results

    Spectro-temporal characterization of auditory neurons: redundant or necessary?

    No full text
    For neurons in the auditory midbrain of the grass frog the use of a combined spectro-temporal characterization has been evaluated against the separate characterizations of frequency-sensitivity and temporal response properties. By factoring the joint density function of stimulus intensity, I(f, t), preceding a spike, into two marginal density functions I1(f) and I2(t) one may under the assumption of statistical independence reconstruct the joint density by multiplication: I1(f) · I2(t). The reconstructed Î(f,t) is compared to the original I(f, t) for 83 neurons: in 23% thereof the Î(f, t) appeared to be vastly different from I(f, t). These units appeared to be located dominantly in the ventral parts of the auditory midbrain and had a latency exceeding 30 ms. On the basis of the action-potential wave forms the absence of non-separable I(f, t) in the incoming nerve fiber population is concluded. A spectro-temporal characterization of auditory neurons seems mandatory for investigations in and central from the auditory midbrain
    corecore