5 research outputs found

    Terminal regions confer plasticity to the tetrameric assembly of human HspB2 and HspB3

    Get PDF
    Heterogeneity in small heat shock proteins (sHsps) spans multiple spatiotemporal regimes – from fast fluctuations of part of the protein, to conformational variability of tertiary structure, plasticity of the interfaces, and polydispersity of the inter-converting, and co-assembling oligomers. This heterogeneity and dynamic nature of sHsps has significantly hindered their structural characterisation. Atomic-coordinates are particularly lacking for vertebrate sHsps, where most available structures are of extensively truncated homomers. sHsps play important roles in maintaining protein levels in the cell and therefore in organismal health and disease. HspB2 and HspB3 are vertebrate sHsps that are found co-assembled in neuromuscular cells, and variants thereof are associated with disease. Here, we present the structure of human HspB2/B3, which crystallised as a hetero-tetramer in a 3:1 ratio. In the HspB2/B3 tetramer, the four a-crystallin domains (ACDs) assemble into a flattened tetrahedron which is pierced by two non-intersecting approximate dyads. Assembly is mediated by flexible “nuts and bolts” involving IXI/V motifs from terminal regions filling ACD pockets. Parts of the N-terminal region bind in an unfolded conformation into the anti-parallel shared ACD dimer grooves. Tracts of the terminal regions are not resolved, most likely due to their disorder in the crystal lattice. This first structure of a full-length human sHsp heteromer reveals the heterogeneous interactions of the terminal regions and suggests a plasticity that is important for the cytoprotective functions of sHsps

    Protein-protein interactions between human exosome components support the assembly of RNase PH-type subunits into a six-membered PNPase-like ring.

    No full text
    Item does not contain fulltextThe exosome is a complex of 3'-->5' exoribonucleases, which functions in a variety of cellular processes, all requiring the processing or degradation of RNA. Here we present a model for the assembly of the six human RNase PH-like exosome subunits into a hexameric ring structure. In part, this structure is on the basis of the evolutionarily related bacterial degradosome, the core of which consists of three copies of the PNPase protein, each containing two RNase PH domains. In our model three additional exosome subunits, which contain S1 RNA-binding domains, are positioned on the outer surface of this ring. Evidence for this model was obtained by the identification of protein-protein interactions between individual exosome subunits in a mammalian two-hybrid system. In addition, the results of co-immunoprecipitation assays indicate that at least two copies of hRrp4p and hRrp41p are associated with a single exosome, suggesting that at least two of these ring structures are present in this complex. Finally, the identification of a human gene encoding the putative human counterpart of the bacterial PNPase protein is described, which suggests that the exosome is not the eukaryotic equivalent of the bacterial degradosome, although they do share similar functional activities

    The association of the human PM/Scl-75 autoantigen with the exosome is dependent on a newly identified N terminus.

    No full text
    Contains fulltext : 186428.pdf (Publisher’s version ) (Open Access)The exosome is a complex of 3' --> 5' exoribonucleases that functions in a variety of cellular processes, all concerning the processing or degradation of RNA. Paradoxically, the previously described cDNA for the human autoantigenic exosome subunit PM/Scl-75 (Alderuccio, F., Chan, E. K., and Tan, E. M. (1991) J. Exp. Med. 173, 941-952) encodes a polypeptide that failed to interact with the exosome complex. Here, we describe the cloning of a more complete cDNA for PM/Scl-75 encoding 84 additional amino acids at its N terminus. We show that only the longer polypeptide is able to associate with the exosome complex. This interaction is most likely mediated by protein-protein interactions with two other exosome subunits, hRrp46p and hRrp41p, one of which was confirmed in a mammalian two-hybrid system. In addition we show that the putative nuclear localization signal present in the C-terminal region of PM/Scl-75 is sufficient, although not essential for nuclear localization of the protein. Moreover, the deletion of this element abrogated the nucleolar accumulation of PM/Scl-75, although its association with the exosome was not disturbed. This suggests that this basic element of PM/Scl-75 plays a role in targeting the exosome to the nucleolus

    PM-Scl-75 is the main autoantigen in patients with the polymyositis/scleroderma overlap syndrome.

    No full text
    OBJECTIVE: To compare the autoantigenicity of the recently described N-terminally elongated PM-Scl-75 protein with that of PM-Scl-100 and the originally defined PM-Scl-75 polypeptide, and to determine its value for analyzing sera from patients with the polymyositis (PM)/scleroderma overlap syndrome. METHODS: Serum samples obtained from patients with the PM/scleroderma overlap syndrome and from patients with several other diseases were analyzed for the presence of autoantibodies reactive with recombinant PM-Scl-100 and PM-Scl-75 (both the original and the longer form) proteins, in an enzyme-linked immunosorbent assay (ELISA). RESULTS: Autoantibodies recognizing the longer PM-Scl-75 protein isoform were detected in 28% of the patients with PM/scleroderma. This percentage is slightly higher than that for PM-Scl-100 (25%) and is significantly higher than that for the previously defined PM-Scl-75 protein (11%). In addition, we identified a significant number of patients who had anti-PM-Scl-75 but not anti-PM-Scl-100 antibodies. This finding contrasts with what has been previously reported for the shorter version of the PM-Scl-75 protein. CONCLUSION: Our data indicate that use of the long PM-Scl-75 isoform in addition to PM-Scl-100 in ELISAs significantly increases the number of patients in whom anti-PM-Scl autoantibodies can be detected

    Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index

    No full text
    The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 Ă— 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 Ă— 10-06/Pfemales: 3.45 Ă— 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation
    corecore