16 research outputs found

    Colorado Ultraviolet Transit Experiment Data Simulator

    Get PDF
    The Colorado Ultraviolet Transit Experiment (CUTE) is a 6U NASA CubeSat carrying on-board a low-resolution (R~2000--3000), near-ultraviolet (2500--3300 {\AA}) spectrograph. It has a rectangular primary Cassegrain telescope to maximize the collecting area. CUTE, which is planned for launch in Spring 2020, is designed to monitor transiting extra-solar planets orbiting bright, nearby stars aiming at improving our understanding of planet atmospheric escape and star-planet interaction processes. We present here the CUTE data simulator, which we complemented with a basic data reduction pipeline. This pipeline will be then updated once the final CUTE data reduction pipeline is developed. We show here the application of the simulator to the HD209458 system and a first estimate of the precision on the measurement of the transit depth as a function of temperature and magnitude of the host star. We also present estimates of the effect of spacecraft jitter on the final spectral resolution. The simulator has been developed considering also scalability and adaptability to other missions carrying on-board a long-slit spectrograph. The data simulator will be used to inform the CUTE target selection, choose the spacecraft and instrument settings for each observation, and construct synthetic CUTE wavelength-dependent transit light curves on which to develop the CUTE data reduction pipeline.Comment: Accepted for publication in the Journal of Astronomical Telescopes, Instruments and System

    Design and Implementation of a Thermoelectric Cooling Solution for a CCD-based NUV Spectrograph

    Get PDF
    The Colorado Ultraviolet Transit Experiment (CUTE) is a 6U CubeSat designed to obtain transit spectra of more than ten close-orbiting exoplanets. To this end, CUTE houses a near-ultraviolet (~250 – 330 nm) spectrograph based around a novel rectangular Cassegrain telescope; the spectrograph sensor is an off-the-shelf Teledyne e2v CCD. To achieve desired spectral signal-to-noise ratio (SNR), dark current is reduced by cooling the CCD to a temperature of −50 °C with a thermoelectric cooler (TEC). The TEC is driven by a constant current buck converter with an H-bridge topology for bidirectional current control. The packaging of the CCD imposes a maximum time rate of change of temperature of 5 K/min. A cascaded software control loop (discussed here) was developed that constrains this time rate of change within allowable bounds while simultaneously driving the CCD temperature to a desired setpoint. Criteria for sizing a TEC to the application and initial laboratory results are discussed, as well as digital filtering methods employed and possible solutions to integral wind-up

    The Colorado Ultraviolet Transit Experiment: The First Dedicated Ultraviolet Exoplanet Mission

    Get PDF
    The past few years of space mission development have seen an increase in the use of small satellites as platforms for dedicated astrophysical research; they offer unique capabilities for time-domain science and complementary advantages over large shared resource facilities like the Hubble Space Telescope, including: (1) low cost and relatively quick development timelines; (2) observing strategies dedicated to niche but important science questions; and (3) ample opportunity for students and early career scientists and engineers to be involved on the front lines of space mission development. The Colorado Ultraviolet Transit Experiment (CUTE) is a NASA-supported 6U CubeSat assembled and tested at the Laboratory for Atmospheric and Space Physics within the University of Colorado Boulder. It is designed to observe the evolving atmospheres on short-period exoplanets with a dedicated science mission unachievable by current and planned future space missions. CUTE operates with a bandpass of ∼2487 – 3376 Å and an average spectral resolution element of 3.9 Å. The mission launched in September of 2021 and is in the process of conducting transit spectroscopy of approximately one dozen short-period exoplanets during its primary mission. This proceeding describes the overall CUTE satellite program, including the mission development integration and testing, anticipated science return, and lessons learned to improve both universities’ and commercial companies’ ability to create and collaborate on successful academically and research-focused small satellite missions. While CubeSats are becoming increasingly accessible and utilized for scientific research and student education, CUTE serves as an example that university small satellite programs have specific needs to successfully and efficiently achieve both scientific and educational elements. These include (1) a minimum threshold of commercial-off-the-shelf product quality, performance, and support; (2) specific and timely guidelines from launch service providers regarding launch readiness and delivery requirements; (3) and sufficient funding to provide multi-disciplinary engineering and program management support across the developmental life-cycle of the mission

    The fourth flight of CHESS: spectral resolution enhancements for high-resolution FUV spectroscopy

    Get PDF
    In this proceeding, we describe the scientific motivation and technical development of the Colorado Highresolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing of components for the fourth and final launch of the payload (CHESS-4). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS is an objective echelle spectrograph, which uses a mechanically-ruled echelle and a powered (f/12.4) cross-dispersing grating; it is designed to achieve a resolving power R > 100,000 over the band pass λλ 1000–1600 Å. CHESS-4 utilizes a 40 mm-diameter cross-strip anode readout microchannel plate detector, fabricated by Sensor Sciences LLC, to achieve high spatial resolution with high global count rate capabilities (∼ MHz). An error in the fabrication of the cross disperser limited the achievable resolution on previous launches of the payload to R ∼ 4000. To remedy this for CHESS-4, we physically stress the echelle grating, introducing a shallow toroidal curvature to the surface of the optic. Preliminary laboratory measurements of the resulting spectrum show a factor of 4–5 improvement to the resolving power. Results from final efficiency and reflectivity measurements for the optical components of CHESS-4 are presented, along with the pre-flight laboratory spectra and calibration results. CHESS-4 launched on 17 April 2018 aboard NASA/University of Colorado Boulder sounding rocket mission 36.333 UG. We present flight results for the observation of the γ Ara sightline

    Colorado Ultraviolet Transit Experiment: a dedicated CubeSat mission to study exoplanetary mass loss and magnetic fields

    Get PDF
    The Colorado Ultraviolet Transit Experiment (CUTE) is a near-UV (2550 to 3300  Å) 6U CubeSat mission designed to monitor transiting hot Jupiters to quantify their atmospheric mass loss and magnetic fields. CUTE will probe both atomic (Mg and Fe) and molecular (OH) lines for evidence of enhanced transit absorption, and to search for evidence of early ingress due to bow shocks ahead of the planet’s orbital motion. As a dedicated mission, CUTE will observe ≳100 spectroscopic transits of hot Jupiters over a nominal 7-month mission. This represents the equivalent of <700 orbits of the only other instrument capable of these measurements, the Hubble Space Telescope. CUTE efficiently utilizes the available CubeSat volume by means of an innovative optical design to achieve a projected effective area of ∼28  cm^2, low instrumental background, and a spectral resolving power of R∼3000 over the primary science bandpass. These performance characteristics enable CUTE to discern transit depths between 0.1% and 1% in individual spectral absorption lines. We present the CUTE optical and mechanical design, a summary of the science motivation and expected results, and an overview of the projected fabrication, calibration, and launch timeline

    Advanced Environmentally Resistant Lithium Fluoride Mirror Coatings for the Next Generation of Broadband Space Observatories

    No full text
    Recent advances in the physical vapor deposition (PVD) of protective fluoride films have raised the far-ultraviolet (FUV: 912-1600 A) reflectivity of aluminum-based mirrors closer to the theoretical limit. The greatest gains, at more than 20%, have come for lithium fluoride-protected aluminum, which has the shortest wavelength cutoff of any conventional overcoat. Despite the success of the NASA FUSE mission, the use of lithium fluoride (LiF)-based optics is rare, as LiF is hygroscopic and requires handling procedures that can drive risk. With NASA now studying two large mission concepts for astronomy, Large UV-Optical-IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HabEx), which mandate throughput down to 1000 , the development of LiF-based coatings becomes crucial. This paper discusses steps that are being taken to qualify these new enhanced LiF-protected aluminum (eLiF) mirror coatings for flight. In addition to quantifying the hygroscopic degradation, we have developed a new method of protecting eLiF with an ultrathin (10-20 A) capping layer of a nonhygroscopic material to increase durability. We report on the performance of eLiF-based optics and assess the steps that need to be taken to qualify such coatings for LUVOIR, HabEx, and other FUV-sensitive space missions

    The On-orbit Performance of the Colorado Ultraviolet Transit Experiment Mission

    No full text
    We present the on-orbit performance of the Colorado Ultraviolet Transit Experiment (CUTE). CUTE is a 6U CubeSat that launched on 2021 September 27 and is obtaining near-ultraviolet (NUV; 2480 Å-3306 Å) transit spectroscopy of short-period exoplanets. The instrument comprises a 20 cm × 8 cm rectangular Cassegrain telescope, an NUV spectrograph with a holographically ruled aberration-correcting diffraction grating, and an NUV-optimized CCD detector. The telescope feeds the spectrograph through an 18′ × 60″ slit. The detector is a passively cooled, back-illuminated NUV-enhanced CCD. The spacecraft bus is a Blue Canyon Technologies XB1, which has demonstrated ≤ 6″ jitter in 56% of CUTE science exposures. Following spacecraft commissioning, an on-orbit calibration program was executed to characterize the CUTE instrument’s on-orbit performance. The results of this calibration indicate that the effective area of CUTE is ≈19.0–27.5 cm ^2 and that the average intrinsic resolution element is 2.9 Å across the bandpass. This paper describes the measurement of the science instrument performance parameters as well as the thermal and pointing characteristics of the observatory
    corecore