9 research outputs found

    Selective BRAFV600E Inhibitor PLX4720, Requires TRAIL Assistance to Overcome Oncogenic PIK3CA Resistance

    Get PDF
    Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAFV600E alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAFV600E mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK) suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKOBRAFV600E/PIK3CAH1047 cells. In contrast, for the same level of apoptosis in HT29BRAFV600E/PIK3CAP449T cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAFV600E. TRAIL dependence on the constitutive activation of BRAFV600E is emphasised through the overexpression of BRAFV600E in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CAMT as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAFV600E mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAFV600E inhibitors in combination with TRAIL in a BRAFV600E mutated background and provided insight for new anti-cancer strategies where the activated PI3KCA mutation oncogene should be suppressed

    BRAFV600E Efficient Transformation and Induction of Microsatellite Instability Versus KRASG12V Induction of Senescence Markers in Human Colon Cancer Cells12

    Get PDF
    In colorectal cancer, BRAF and KRAS oncogenes are mutated in about 15% and 35% respectively at approximately the same stage of the adenoma-carcinoma sequence. Since these two mutations rarely coexist, further analysis to dissect their function of transformation in colon cancer is required. Caco-2 human colon adenocarcinoma cells were stably transfected with BRAFV600E (Caco-BR cells) or KRASG12V (Caco-K cells) oncogenes. BRAFV600E is more efficient in transforming Caco-2 cells and altering their morphology. The dominant nature of BRAFV600E is evident by its ability to render Caco-2 cells tumorigenic in vivo all be it through selective extracellular signal-related kinase (ERK) 2 phosphorylation and high levels of cyclin D1. As a consequence, the cell cycle distribution of parental cells is altered and microsatellite instability is introduced. Attenuated ERK activation observed correlated with KSR downregulation by BRAFV600E without further implications to signaling. Highly activated ERK in case of KRASG12V (Caco-K cells) leads to mild transformation causing Caco-K cells to express premature senescence-related markers and acquire growth factor-dependent viability. Interestingly, BRAFWT gets equally activated by upstream KRAS mutations present in colon adenocarcinoma cells such as DLD-1 and SW620. Taken together, these results suggest that the two oncogenes have different transforming capability in colon cancer, although they both use the mitogen-activated protein (MAP) kinase pathway to carry out their effect. In general, BRAFV600E presents greater potential in mediating tumorigenic effect as compared to KRASG12V both in vivo and in vitro. These findings may have implications in personalised diagnosis and targeted therapeutics
    corecore