34 research outputs found

    Deep convolutional neural network with 2D spectral energy maps for fault diagnosis of gearboxes under variable speed.

    Get PDF
    For industrial safety, correct classification of gearbox fault conditions is necessary. One of the most crucial tasks in data-driven fault diagnosis is determining the best set of features by analyzing the statistical parameters of the signals. However, under variable speed conditions, these statistical parameters are incapable of uncovering the dynamic characteristics of different fault conditions of gearboxes. Later, several deep learning algorithms are used to improve the performance of the feature selection process, but domain knowledge expertise is still necessary. In this paper, a combination domain knowledge analysis and a deep neural network is proposed. By using the input acoustic emission (AE) signal, a two-dimensional spectrum energy map (2D AE-SEM) is created to form an identical fault pattern for various speed conditions of gearboxes. Then, a deep convolutional neural network (DCNN) is proposed to investigate the detailed structure of the 2D input for final fault classification. This 2D AE-SEM offers a graphical depiction of acoustic emission spectral characteristics. Our proposed system offers vigorous and dynamic classification performance through the proposed DCNN with a high diagnostic fault classification accuracy of 96.37% in all considered scenarios

    Planetary bearing defect detection in a commercial helicopter main gearbox with vibration and acoustic emission

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Helicopter gearboxes significantly differ from other transmission types and exhibit unique behaviors that reduce the effectiveness of traditional fault diagnostics methods. In addition, due to lack of redundancy, helicopter transmission failure can lead to catastrophic accidents. Bearing faults in helicopter gearboxes are difficult to discriminate due to the low signal to noise ratio (SNR) in the presence of gear vibration. In addition, the vibration response from the planet gear bearings must be transmitted via a time-varying path through the ring gear to externally mounted accelerometers, which cause yet further bearing vibration signal suppression. This research programme has resulted in the successful proof of concept of a broadband wireless transmission sensor that incorporates power scavenging whilst operating within a helicopter gearbox. In addition, this paper investigates the application of signal separation techniques in detection of bearing faults within the epicyclic module of a large helicopter (CS-29) main gearbox using vibration and Acoustic Emissions (AE). It compares their effectiveness for various operating conditions. Three signal processing techniques including an adaptive filter, spectral kurtosis and envelope analysis, were combined for this investigation. In addition, this research discusses the feasibility of using AE for helicopter gearbox monitoring

    The application of spectral kurtosis on Acoustic Emission and vibrations from a defective bearing

    Get PDF
    The application of Acoustic Emission (AE) technology for machine health monitoring is gaining ground as power tool for health diagnostic of rolling element bearing. This paper provides an investigation that compares the applicability of AE and vibration technologies in monitoring a naturally degraded roller bearing. This research is the first known attempt investigating the comparative effectiveness of applying the Kurtogram to both vibration and AE data from a defective bearing

    Acoustic emission signals associated with damaged helical gears

    No full text

    Defect size estimation in rolling element bearings using vibration time waveform

    No full text
    corecore