19 research outputs found

    Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: a combined role for local selection and genetic drift on color morph frequency divergence?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, <it>Podarcis gaigeae</it>, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations.</p> <p>Results</p> <p>Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (N<sub>e</sub>:s < 100). Population divergence (F<sub>ST</sub>) for throat color morph frequencies fell within the neutral F<sub>ST</sub>-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs.</p> <p>Conclusions</p> <p>Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that there is an interaction between selection and genetic drift causing divergence even at a phenotypic level in these small, subdivided populations.</p

    Anatomical and physiological changes associated with a recent dietary shift in the lizard Podarcis sicula

    Get PDF
    ABSTRACT Dietary shifts have played a major role in the evolution of many vertebrates. The idea that the evolution of herbivory is physiologically constrained in squamates is challenged by a number of observations that suggest that at least some lizards can overcome the putative physiological difficulties of herbivory on evolutionary and even ecological timescales. We compared a number of morphological and physiological traits purportedly associated with plant consumption between two island populations of the lacertid lizard Podarcis sicula. Previous studies revealed considerable differences in the amount of plant material consumed between those populations. We continued the investigation of this study system and explored the degree of divergence in morphology (dentition, gut morphology), digestive performance (gut passage time, digestive efficiency), and ecology (endosymbiont density). In addition, we also performed a preliminary analysis of the plasticity of some of these modifications. Our results confirm and expand earlier findings concerning divergence in the morphology of feeding structures between two island populations of P. sicula lizards. In addition to the differences in skull dimensions and the prevalence of cecal valves previously reported, these two recently diverged populations also differ in aspects of their dentition (teeth width) and the lengths of the stomach and small intestine. The plasticity experiment suggests that at least some of the changes associated with a dietary shift toward a higher proportion of plant material may be plastic. Our results also show that these morphological changes effectively translate into differences in digestive performance: the population with the longer digestive tract exhibits longer gut passage time and improved digestive efficiency

    Sex does not affect tail autotomy in lacertid lizards

    Get PDF
    Caudal autotomy is one of the most effective and widespread defensive mechanisms among lizards. When predators grasp the tail, lizards are able to shed it from the point of the attack and further. Numerous factors have been reported to affect tail-shedding performance such as temperature, age, predation pressure, intraspecific competition etc. Interestingly, the impact of sex on tail loss remains greatly understudied. Here, we analyzed tail autotomy performance, simulated in the lab, in 12 species of lacertid lizards belonging to five genera (Algyroides, Anatololacerta, Hellenolacerta, Ophisops, Podarcis). Our aim was to investigate whether sex affects caudal autotomy and/or the duration of post-autotomic tail movement. We failed to detect any effect of sex on tail loss in the species examined. Also, we did not find any sexual impact on the duration of tail movement after autotomy, with a single exception. Our findings suggest that autotomy serves as a defensive tactic equally in both sexes and is used in the same extent.

    The castaway: characteristic islet features affect the ecology of the most isolated European lizard

    No full text
    The ecological importance of islet endemics are in the front line of conservation efforts and thus the good knowledge of their biology is required. Podarcis levendis is a lacertid lizard, endemic to two rocky islets in the Cretan Sea, Greece, that was raised to specific level in 2008 and since then no data on its biology are available. Here we present the first ecological information on the species, focusing on population density, tail autotomy and feeding preferences. We recorded regenerated and damaged tails in the field and estimated population density with the transect method. We also dissected museum specimens and analyzed their stomach content. Regenerated tails were common and reached a considerable 71%. The latter finding could be attributed to the intense intraspecific competition due to high population density but also to the seasonal predation pressure by migratory birds. The diet of P. levendis coincides with that of other insular congenerics, including high percentages of plant material

    Anatomical and physiological changes associated with a recent dietary shift in the Lizard **Podarcis sicula**

    Get PDF
    ABSTRACT Dietary shifts have played a major role in the evolution of many vertebrates. The idea that the evolution of herbivory is physiologically constrained in squamates is challenged by a number of observations that suggest that at least some lizards can overcome the putative physiological difficulties of herbivory on evolutionary and even ecological timescales. We compared a number of morphological and physiological traits purportedly associated with plant consumption between two island populations of the lacertid lizard Podarcis sicula. Previous studies revealed considerable differences in the amount of plant material consumed between those populations. We continued the investigation of this study system and explored the degree of divergence in morphology (dentition, gut morphology), digestive performance (gut passage time, digestive efficiency), and ecology (endosymbiont density). In addition, we also performed a preliminary analysis of the plasticity of some of these modifications. Our results confirm and expand earlier findings concerning divergence in the morphology of feeding structures between two island populations of P. sicula lizards. In addition to the differences in skull dimensions and the prevalence of cecal valves previously reported, these two recently diverged populations also differ in aspects of their dentition (teeth width) and the lengths of the stomach and small intestine. The plasticity experiment suggests that at least some of the changes associated with a dietary shift toward a higher proportion of plant material may be plastic. Our results also show that these morphological changes effectively translate into differences in digestive performance: the population with the longer digestive tract exhibits longer gut passage time and improved digestive efficiency

    Reproductive Biology of Insular Reptiles: Marine Subsidies Modulate Expression of the "Island Syndrome"

    No full text
    Differences in ecological conditions can result in the evolution of dramatic inter-population shifts in whole suites of traits. We studied variation in reproductive output in three lizard populations of the Skyros Wall Lizard (Podarcis gaigeae, Lacertidae) endemic to the Skyros Archipelago (Greece), which live under similar climatic conditions but differ in predation pressure and food availability. Based on the "Island syndrome" hypothesis, we predicted that females from Island populations would produce larger, but fewer offspring. The study populations differ conspicuously in average body size, with males from the satellite Lakonissi and Diavates islets being respectively 20% and 39% larger than males from the main Skyros Island. Lizards from these predator-free islets produced eggs of larger size than the main Skyros population; however, they also produced significantly larger clutches than the Skyros population (2.31 +/- 0.83 and 2.73 +/- 1.0 vs. 1.97 +/- 0.58 eggs). All inter-population differences in clutch size, clutch volume, and egg size were explained by corresponding differences in average body size of the dams, revealing that across all populations, reproductive effort scaled similarly with maternal body size. There was no evidence of trade-offs between egg size and clutch size as generally encountered in many reptile taxa. The occurrence of this unusual pattern of reproductive investment among islet populations of giants is probably best explained by the occurrence of two underlying drivers: first, the substantial marine subsidies by resident seabird colonies and second, the existence of intense cannibalistic behaviors in the form of attacks to the tail and severe intraspecific predation on juveniles. This suggests that subsidies-driven gigantism in island endemics may free species from such trade-offs and allow a population to maximize reproductive output in multiple, normally conflicting dimensions
    corecore