40 research outputs found

    Towards Precision Psychiatry: gray Matter Development And Cognition In Adolescence

    Get PDF
    Precision Psychiatry promises a new era of optimized psychiatric diagnosis and treatment through comprehensive, data-driven patient stratification. Among the core requirements towards that goal are: 1) neurobiology-guided preprocessing and analysis of brain imaging data for noninvasive characterization of brain structure and function, and 2) integration of imaging, genomic, cognitive, and clinical data in accurate and interpretable predictive models for diagnosis, and treatment choice and monitoring. In this thesis, we shall touch on specific aspects that fit under these two broad points. First, we investigate normal gray matter development around adolescence, a critical period for the development of psychopathology. For years, the common narrative in human developmental neuroimaging has been that gray matter declines in adolescence. We demonstrate that different MRI-derived gray matter measures exhibit distinct age and sex effects and should not be considered equivalent, as has often been done in the past, but complementary. We show for the first time that gray matter density increases from childhood to young adulthood, in contrast with gray matter volume and cortical thickness, and that females, who are known to have lower gray matter volume than males, have higher density throughout the brain. A custom preprocessing pipeline and a novel high-resolution gray matter parcellation were created to analyze brain scans of 1189 youths collected as part of the Philadelphia Neurodevelopmental Cohort. This work emphasizes the need for future studies combining quantitative histology and neuroimaging to fully understand the biological basis of MRI contrasts and their derived measures. Second, we use the same gray matter measures to assess how well they can predict cognitive performance. We train mass-univariate and multivariate models to show that gray matter volume and density are complementary in their ability to predict performance. We suggest that parcellation resolution plays a big role in prediction accuracy and that it should be tuned separately for each modality for a fair comparison among modalities and for an optimal prediction when combining all modalities. Lastly, we introduce rtemis, an R package for machine learning and visualization, aimed at making advanced data analytics more accessible. Adoption of accurate and interpretable machine learning methods in basic research and medical practice will help advance biomedical science and make precision medicine a reality

    Intrinsic connectivity network disruption in progressive supranuclear palsy

    Get PDF
    Objective Progressive supranuclear palsy (PSP) has been conceptualized as a large-scale network disruption, but the specific network targeted has not been fully characterized. We sought to delineate the affected network in patients with clinical PSP. Methods Using task-free functional magnetic resonance imaging, we mapped intrinsic connectivity to the dorsal midbrain tegmentum (dMT), a region that shows focal atrophy in PSP. Two healthy control groups (1 young, 1 older) were used to define and replicate the normal connectivity pattern, and patients with PSP were compared to an independent matched healthy control group on measures of network connectivity. Results Healthy young and older subjects showed a convergent pattern of connectivity to the dMT, including brainstem, cerebellar, diencephalic, basal ganglia, and cortical regions involved in skeletomotor, oculomotor, and executive control. Patients with PSP showed significant connectivity disruptions within this network, particularly within corticosubcortical and cortico-brainstem interactions. Patients with more severe functional impairment showed lower mean dMT network connectivity scores. Interpretation This study defines a PSP-related intrinsic connectivity network in the healthy brain and demonstrates the sensitivity of network-based imaging methods to PSP-related physiological and clinical changes. Ann Neurol 2013;73:603-61

    Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia.

    Get PDF
    The brain continuously influences and perceives the physiological condition of the body. Related cortical representations have been proposed to shape emotional experience and guide behavior. Although previous studies have identified brain regions recruited during autonomic processing, neurological lesion studies have yet to delineate the regions critical for maintaining autonomic outflow. Even greater controversy surrounds hemispheric lateralization along the parasympathetic-sympathetic axis. The behavioral variant of frontotemporal dementia (bvFTD), featuring progressive and often asymmetric degeneration that includes the frontoinsular and cingulate cortices, provides a unique lesion model for elucidating brain structures that control autonomic tone. Here, we show that bvFTD is associated with reduced baseline cardiac vagal tone and that this reduction correlates with left-lateralized functional and structural frontoinsular and cingulate cortex deficits and with reduced agreeableness. Our results suggest that networked brain regions in the dominant hemisphere are critical for maintaining an adaptive level of baseline parasympathetic outflow
    corecore