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Towards Precision Psychiatry: gray Matter Development And Cognition
In Adolescence

Abstract
Precision Psychiatry promises a new era of optimized psychiatric diagnosis and treatment through
comprehensive, data-driven patient stratification. Among the core requirements towards that goal are: 1)
neurobiology-guided preprocessing and analysis of brain imaging data for noninvasive characterization of
brain structure and function, and 2) integration of imaging, genomic, cognitive, and clinical data in accurate
and interpretable predictive models for diagnosis, and treatment choice and monitoring. In this thesis, we
shall touch on specific aspects that fit under these two broad points. First, we investigate normal gray matter
development around adolescence, a critical period for the development of psychopathology. For years, the
common narrative in human developmental neuroimaging has been that gray matter declines in adolescence.
We demonstrate that different MRI-derived gray matter measures exhibit distinct age and sex effects and
should not be considered equivalent, as has often been done in the past, but complementary. We show for the
first time that gray matter density increases from childhood to young adulthood, in contrast with gray matter
volume and cortical thickness, and that females, who are known to have lower gray matter volume than males,
have higher density throughout the brain. A custom preprocessing pipeline and a novel high-resolution gray
matter parcellation were created to analyze brain scans of 1189 youths collected as part of the Philadelphia
Neurodevelopmental Cohort. This work emphasizes the need for future studies combining quantitative
histology and neuroimaging to fully understand the biological basis of MRI contrasts and their derived
measures. Second, we use the same gray matter measures to assess how well they can predict cognitive
performance. We train mass-univariate and multivariate models to show that gray matter volume and density
are complementary in their ability to predict performance. We suggest that parcellation resolution plays a big
role in prediction accuracy and that it should be tuned separately for each modality for a fair comparison
among modalities and for an optimal prediction when combining all modalities. Lastly, we introduce rtemis,
an R package for machine learning and visualization, aimed at making advanced data analytics more
accessible. Adoption of accurate and interpretable machine learning methods in basic research and medical
practice will help advance biomedical science and make precision medicine a reality.
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ABSTRACT 

TOWARDS PRECISION PSYCHIATRY: 

GRAY MATTER DEVELOPMENT AND COGNITION IN ADOLESCENCE 

Efstathios D. Gennatas 

Ruben C. Gur 

Precision Psychiatry promises a new era of optimized psychiatric diagnosis 

and treatment through comprehensive, data-driven patient stratification. 

Among the core requirements towards that goal are: 1) neurobiology-guided 

preprocessing and analysis of brain imaging data for noninvasive 

characterization of brain structure and function, and 2) integration of 

imaging, genomic, cognitive, and clinical data in accurate and interpretable 

predictive models for diagnosis, and treatment choice and monitoring. In this 

thesis, we shall touch on specific aspects that fit under these two broad 

points. First, we investigate normal gray matter development around 

adolescence, a critical period for the development of psychopathology. For 

years, the common narrative in human developmental neuroimaging has 

been that gray matter declines in adolescence. We demonstrate that different 

MRI-derived gray matter measures exhibit distinct age and sex effects and 

should not be considered equivalent, as has often been done in the past, but 

complementary. We show for the first time that gray matter density increases 

from childhood to young adulthood, in contrast with gray matter volume and 

cortical thickness, and that females, who are known to have lower gray 
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matter volume than males, have higher density throughout the brain. A 

custom preprocessing pipeline and a novel high-resolution gray matter 

parcellation were created to analyze brain scans of 1189 youths collected as 

part of the Philadelphia Neurodevelopmental Cohort. This work emphasizes 

the need for future studies combining quantitative histology and 

neuroimaging to fully understand the biological basis of MRI contrasts and 

their derived measures. Second, we use the same gray matter measures to 

assess how well they can predict cognitive performance. We train mass-

univariate and multivariate models to show that gray matter volume and 

density are complementary in their ability to predict performance. We suggest 

that parcellation resolution plays a big role in prediction accuracy and that it 

should be tuned separately for each modality for a fair comparison among 

modalities and for an optimal prediction when combining all modalities. 

Lastly, we introduce rtemis, an R package for machine learning and 

visualization, aimed at making advanced data analytics more accessible. 

Adoption of accurate and interpretable machine learning methods in basic 

research and medical practice will help advance biomedical science and make 

precision medicine a reality. 
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1. INTRODUCTION 

The assessment and management of psychiatric disorders have always 

been greatly challenging. Psychiatric research and clinical management have 

come a long way over the past century, yet diagnosis still suffers from low 

accuracy rates and current treatment efforts enjoy limited success, both in 

terms of numbers effectively treated and the extent of their improvement. 

Research and clinical assessment tools, including neuroimaging, genomic 

sequencing, and clinical and cognitive testing, are helping accumulate large 

datasets on healthy subjects and patients with psychiatric symptoms. 

Advanced data analysis methods are becoming increasingly available and 

promise to deliver important insights to fill in the gaps in our understanding 

of psychopathology and suggest better ways to manage it. 

Precision medicine refers to clinical decision-making tailored to the 

individual. The term has emerged in recent years to describe the goal of 

capturing and addressing individual idiosyncrasy in order to optimize clinical 

decision making and outcomes by capitalizing on a) the increasing amounts 

of available clinical data b) increasing computational power, and c) advanced 

data analytic methods. Consider the stark contrast between the common 

approach in biomedical research versus the reality of clinical practice. The 

former has in large part focused on comparing groups of patients vs. healthy 

controls to test hypotheses, while the latter has always focused on 

assessment of the individual. At the same time, the available classification 
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and diagnostic manuals, DSM 5 and ICD 10, suggest clinicians fit patients into 

groups using a discrete set of labels. It is becoming increasingly clear that 

these categories correspond very poorly with underlying brain pathology 

(Hyman, 2007; Insel and Cuthbert, 2015). Perhaps more than clinical practice, 

this has affected psychiatric research, as researchers end up studying 

inhomogeneous groups of subjects based on their DSM, or similar, labels and 

often deriving divergent results. To address this, the National Institute of 

Mental Health (NIMH) introduced in 2010 the Research Domain Criteria 

(RDoC) project to shift focus from symptoms to underlying neuropathology, 

thus providing a framework for enhanced patient stratification that would 

better support ongoing psychiatric research and would help shape future 

brain-based clinical classification schemes (Insel et al., 2010). Importantly, 

the RDoC project, an ongoing experiment (https://www.nimh.nih.gov/about/

director/messages/2017/the-future-of-rdoc.shtml), stresses the dimensional 

aspect of behavior and psychopathology and the need for a robust, data-

driven discovery process. Symptoms are not either present or absent and do 

not come in discrete sets, but can be present at a variable extent in 

overlapping combinations. 

Magnetic resonance neuroimaging affords researchers and clinicians 

the ability to study the human brain in vivo in a safe and noninvasive way. 

MRI scanners can be programmed to create different contrasts to focus 

selectively on different brain tissue or processes, e.g. gray or white matter, 
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water diffusion, blood oxygenation level, etc. Trade-offs between temporal 

and spatial resolution, among other parameters, can be exploited to create 

sequences that create one or more high-resolution images or a whole 

timeseries. A T1-weighted image can differentiate protons based on their 

immediate environment and provides a high-resolution structural image of 

the brain with good tissue contrast. A diffusion-weighted image (DWI) 

measures water diffusion which can be used to estimate direction of 

myelinated white matter tracts. Blood-oxygen-level-dependent (BOLD) 

signal can be acquired in rapid succession to study changes in blood flow over 

time across the brain. Human subjects can be imaged at any age, from infancy 

to advanced age, even in utero, to build extensive cross-sectional and 

longitudinal datasets on healthy subjects and patients. As such, MR 

neuroimaging is one of the core tools for the study of human subjects in 

neurologic and psychiatric research.  

Data analysis, in general, can be divided into two main steps: data 

preprocessing, and statistical analysis / modeling. Preprocessing, which 

includes data inspection, cleaning, and transformation forms the bulk of the 

work and commands most of the attention both because it consists of 

multiple steps, each involving multiple parameters, and because the success 

of any subsequent modeling is directly dependent on it. It is also not unique: 

different analysis methods may benefit from, or require, different preparation 

of the same data. A weak modeling approach on solid data will generally yield 
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far more meaningful and useable results than the most powerful algorithm 

trained on bad data. “There is no substitute for good data” (Luck, 2014).  

Each type of MRI requires its own set of preprocessing steps before any 

statistical analysis and modeling can be applied. A main challenge across MRI 

modalities remains the scarcity of validation data. Little is known about the 

direct relationship between MRI contrasts and the underlying neurobiology, 

which makes tuning of preprocessing parameters particularly tricky. As no 

gold standards exist in preprocessing, variability in methods remain a source 

of uncertainty and heterogeneity across studies and their results. 

Following preprocessing, approaches for hypothesis testing and 

modeling are drawn from all of statistics and machine learning. Formal 

statistical methods come with specific assumptions that must be met if they 

are to be employed, while other methods can be applied more universally. For 

example, the Generalized Linear Model has been the de facto standard for 

neuroimaging data analysis, and while it remains a valid choice for many 

applications, a lot of datasets it is commonly applied on violate some of its 

core assumptions, commonly the assumptions of normality and linearity. 

Even after careful consideration of modeling assumptions, it is not possible to 

accurately predict which combination of methods will yield best results. This 

can lead to repeated attempts at data preprocessing and modeling until a 

specific preconceived relationship is found or any significant result is 

obtained, leading to high bias and reduced validity / reproducibility of 
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published results. The need is evident for informed preprocessing and 

modeling of biomedical data. 

In this thesis, we shall focus on specific aspects of data preprocessing 

and analysis of neuroimaging data that we believe form part of core 

considerations for neuropsychiatric imaging research. Specifically, we shall 

explore structural brain development around adolescence and its relation to 

cognition. The first chapter has four broad goals: 

• Recommend a pipeline for T1-weighted MRI preprocessing and 

estimation of gray matter measures: gray matter density, volume, mass, 

and cortical thickness 

• Propose a method for high-resolution gray matter parcellation 

• Characterize age-related and sex effects on different gray matter 

measures from childhood to young adulthood and clear longstanding 

confusion by showing they are unique and complementary, not equivalent 

• Provide an overview of factors known to affect structural MRI signal 

and emphasize the need for combined histology and MRI studies to fully 

understand the biological basis of MRI contrasts and derived measures 

In the second chapter, we explore how well these gray matter measures 

predict cognitive performance in different age groups:  

• We hypothesize that structural-functional coupling grows stronger 

with age.  
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• Based on this, we predict that prediction accuracy will be highest in 

the oldest subjects.  

 Finally, in the third chapter we present rtemis, an R package for 

machine learning and visualization, which was developed to support the 

above work and is aimed at making advanced data analytics more accessible 

to biomedical and other researchers.  
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2. AGE-RELATED EFFECTS AND SEX DIFFERENCES IN GRAY 
MATTER DENSITY, VOLUME, MASS, AND CORTICAL 
THICKNESS FROM CHILDHOOD TO YOUNG ADULTHOOD 

INTRODUCTION 

Structural neuroimaging provides insights into the spectrum of typical and 

non-typical brain and neurocognitive development. T1-weighted imaging is 

the most commonly acquired MRI sequence and offers high-resolution, low-

noise images of brain structure with good tissue contrast. Several structural 

measures can be derived from a single T1-weighted image, including gray 

matter density (GMD), gray matter volume (GMV), and cortical thickness 

(CT). Since the early days of MRI, a large body of research has utilized these 

measures to study healthy and clinical populations. Perhaps surprisingly, 

confusion exists in the field as GMD, GMV, and CT are often wrongly assumed 

to be equivalent or highly related measures of regional gray matter quantity. 

GMV and CT are measured in mm3 and mm, respectively. GMD, on the other 

hand, is a unitless, scalar measure derived from image segmentation and 

related to T1 signal intensity. In one form or other, gray matter abnormalities 

have been described in all major neurologic and psychiatric diseases. Voxel 

Based Morphometry (VBM) analyses have suggested syndrome-specific 

regional atrophy patterns in neurodegenerative diseases (Seeley et al., 2009). 

Gray matter abnormalities are widely reported in psychiatric disorders as well 

but paint a more complex picture (Brent et al., 2013; Bakhshi and Chance, 
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2015), likely reflecting both increased neuropathological heterogeneity and 

diagnostic variability. Much of psychopathology emerges around adolescence, 

a period characterized by rapid changes in behavior. Detecting and 

interpreting what may often be subtle and diffuse disease-related differences 

on top of profound and variable age-related changes is particularly 

challenging. A clear, multidimensional understanding of normative structural 

brain development is therefore essential. 

The first two years of life are characterized by rapid gray matter 

growth, which reaches its lifetime maximum at around age 2-3 (Matsuzawa 

et al., 2001; Knickmeyer et al., 2008). In contrast, myelination of white matter 

tracts continues well into adulthood, until the late 30s (Grydeland et al., 

2013). Several developmental neuroimaging studies have described modest 

decreases in gray matter during adolescence using measures derived from 

gray matter volume and cortical thickness (Sowell et al., 2003; Gogtay et al., 

2004; Sowell et al., 2004; Shaw et al., 2008; Brain Development Cooperative 

Group, 2012). It should be noted that some of the early studies used the term 

“gray matter density” to refer to the proportion of gray matter voxels around 

a sphere of fixed diameter following hard segmentation of the brain (Sowell 

et al., 2003; Gogtay et al., 2004; Sowell et al., 2004), and suggested this 

quantity reflected local cortical thickness. Today, cortical thickness can be 

measured directly using automated methods and GMD usually refers to a 

different measure, specifically the output of soft segmentation. Unlike hard 
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segmentation, where each voxel is labeled as “gray”, “white”, or “CSF” (for 

the common 3-class case), soft segmentation creates a GMD map by 

assigning voxels a value between zero and one, which is considered to reflect 

the amount of gray matter in each voxel. It is related to the T1 signal and thus 

to the regional proton density as well as the tissue microenvironment. To 

complicate things further, one of the most common measures employed in 

the literature, and the default option in many VBM pipelines, is “modulated” 

gray matter density. This is equal to GMD multiplied by a scaling factor to 

account for volume change from the individual’s native space image to the 

registration template. It adds to the confusion because the relative 

contribution of each measure is unclear and likely variable spatially and 

temporally (with regards to age). To date, no study has compared age-related 

effects on these four commonly used gray matter measures. 

In this study, we used the extensive cross-sectional neuroimaging 

dataset collected on the Philadelphia Neurodevelopmental Cohort (PNC) to 

characterize age effects and sex differences on native space gray matter 

density, volume, and mass (defined as density times volume; equivalent to 

modulated gray matter density), as well as cortical thickness. 
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MATERIALS AND METHODS 

Subjects and MRI acquisition


All data was collected as part of the Philadelphia Neurodevelopmental Cohort 

as previously described (Satterthwaite et al., 2014). Procedures were approved 

by the Institutional Review Boards of the Children’s Hospital of Philadelphia 

and of the University of Pennsylvania. 1189 subjects (648 females) aged 8 to 

23 years were selected from a starting total of 1601 after excluding those with 

neurological or psychiatric history, use of psychoactive medication or 

incidental findings and those whose structural data failed quality control. 

Scanning of all subjects was performed on the same Siemens TIM Trio 

scanner (Erlangen, Germany) at the Hospital of the University of 

Pennsylvania. T1-weighted imaging was obtained using a magnetization 

prepared, rapid-acquisition gradient-echo (MPRAGE) sequence (TR = 1810, TE 

= 3.5, TI = 1100; FOV = 180 RL / 240 AP). 

MRI preprocessing


A custom T1 preprocessing pipeline was created using ANTs (https://

github.com/stnava/ANTs; RRID: SCR_004757). Raw T1 volumes were first 

corrected for bias due to field inhomogeneity using the N4 algorithm 

(Tustison et al., 2010). The bias-corrected volumes were then registered to a 

whole-head MNI template (whole-head-to-whole-head registration). The 

inverse transformation was used to map the MNI brain mask to native space, 
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which was used to isolate the brain in native space (skull-stripping). The 

skull-stripped volume was then registered to the skull-stripped MNI 

template (brain-to-brain registration), which results in improved registration 

accuracy compared to the whole-head-to-whole-head registration (Klein et 

�11

Figure 2.1 T1 preprocessing and high-resolution gray matter parcellation. A, Raw T1 
MPRAGE volumes were first corrected for field inhomogeneity and then skull stripped by 
transforming the MNI brain mask to native space. Gray matter segmentation was 
performed without the use of tissue priors to produce unbiased estimates of GMD. B, 
The GMD maps of an age- and sex-balanced subsample of 240 subjects were averaged 
and smoothed; 1 minus the gradient of the resulting image was calculated and passed to 
a 3D watershed algorithm, resulting in 1625 regions covering the whole-brain gray 
matter.



al., 2010). Registrations were performed by a sequence of rigid, affine and 

symmetric diffeomorphic (SyN) transformations (Avants et al., 2008; Klein et 

al., 2009). 

Gray matter density and cortical thickness estimation


MRI brain tissue segmentation is commonly guided by a set of tissue priors. 

Given the wide age range of our sample, we wanted to avoid using a single set 

of priors for all subjects or different sets of priors for different age bins. We 

therefore implemented an iterative process based on Atropos (Avants et al., 

2011) that requires no tissue priors. On the first iteration, K-means 

initialization was used to derive 3 classes. The following two iterations used 

the segmentation output of the previous step for initialization. This procedure 

resulted in a 3-class hard segmentation and a GMD map (soft segmentation) 

for each subject in native space (Figure 2.1A). Cortical thickness was obtained 

using ANTs’ diffeomorphic registration-based cortical thickness (DiReCT) 

estimation procedure (Das et al., 2009) as implemented in the ANTsCT 

pipeline, following registration of all T1 images to a study-specific template. 

This method offers reliable CT estimation (Tustison et al., 2014) and, by 

providing a voxelwise measure in native volumetric space, allows the use of 

the same brain parcellation as the other modalities. 

�12



Quality assurance


To assess the quality of the T1 acquisition and segmentation, we calculated 

pairwise spatial correlations among all subjects for two sets of images: bias-

field corrected, normalized T1s and normalized GMD maps. All images whose 

spatial correlation was more than two standard deviations lower than the 

mean in either case were excluded (n = 56). Visual check confirmed variable 

extent of motion artifact in the excluded images, with those near the 

threshold being only minimally affected (still excluded). Motion artifact is 

known to significantly affect tissue segmentation and all our derived 

measures (Blumenthal et al., 2002; Savalia et al., 2016) and our large sample 

afforded us this perhaps conservative exclusion threshold. 

High-resolution gray matter parcellation


Multiple methods for whole brain parcellation have been previously proposed. 

Anatomical parcellations, like the AAL atlas (Tzourio-Mazoyer et al., 2002), 

and the Harvard-Oxford Atlas (distributed with FSL; https://

fsl.fmrib.ox.ac.uk/; RRID:SCR_002823) are based on neuroanatomy but 

consist of a small number of relatively large regions. Using large parcels or 

regions of interest (ROIs) runs the risk of averaging over inhomogeneous 

regions, resulting in signal loss. On the other hand, a number of approaches 

have been proposed for parcellation based on functional connectivity derived 

from task-free functional MRI data (also known as resting state fMRI), but 

none based on T1-weighted images. A recent approach used multimodal MRI 

�13

https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/


data to create a parcellation of 180 regions in each hemisphere. As the authors 

note, the parcels show high variance in shape and size and consider their 

number to be “a lower bound, as some parcels are probably complexes of 

multiple areas” (Glasser et al., 2016). 

Our goal was to develop a high-resolution parcellation derived from 

structural data where parcels are centered around GMD peaks, i.e. cortical gyri 

and subcortical nuclei. An age- and sex-matched subsample of the 1189 

subjects was created by first splitting the initial sample by sex, then splitting 

each set into deciles based on its age range, and finally randomly selecting 12 

subjects from each resulting subset (i.e. 12 subjects per sex per age decile), 

giving a total of 240 subjects. A mean image was created from the 

normalized, smoothed GMD maps of these subjects. In order to identify GMD 

peaks, the gradient of the mean GMD image was calculated, subtracted from 

1, and smoothed. A 3D watershed algorithm was applied on the resulting 

image, producing 1625 parcels covering the whole brain gray matter (Figure 

2.1B). 

Native space parcelwise data extraction


The PNC-GMD1625 parcellation was transformed to each subject’s native 

space by applying the inverse of the brain-to-brain transformation (i.e. MNI-

to-native space) and masked by each subject’s gray matter hard 

segmentation. Volume and mean GMD and CT values were estimated for each 
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parcel for each subject using the c3d utility (part of ITK-SNAP; http://

www.itksnap.org/; RRID: SCR_002010). CT values were measured for 1339 of 

the 1625 regions, after excluding subcortical regions. In order to get a native 

space equivalent of modulated density, we derived gray matter mass (GMM) 

as the product of GMD and GMV. Native space analysis allows direct 

measurement of GMV and extraction of mean GMD and CT values with no 

interpolation. Averaging GMD and CT values within each parcel instead of 

applying Gaussian smoothing avoids smoothing-related artifacts which are 

exaggerated in a segmented image. Cortical thickness (and therefore the gray 

matter segmentation) varies around 2-5mm while smoothing kernels are 

commonly at least 8mm full width at half maximum (FWHM). In a gray 

matter segmentation, this results in voxel intensities being averaged with 

surrounding empty voxels (i.e. voxels of zero intensity), causing a drop in 

signal. The extent of signal drop depends on the number of surrounding 

empty voxels, which varies both by brain region and age. This makes 

intensity values from different locations incomparable and directly confounds 

age-related effects. Interpolation results in a similar artifact, equivalent to 

smoothing at the single voxel level. 
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Age-related effects and sex differences 


Generalized additive models (GAMs) were used to characterize age-related 

effects and sex differences on GMD, GMV, GMM, and CT using the mgcv 

package (Wood, 2011; Wood, 2012) in R (R Project for Statistical Computing; 

https://www.r-project.org/; RRID:SCR_001905). A GAM is similar to a 

generalized linear model where predictors can be replaced by smooth 

functions of themselves, offering efficient and flexible estimation of non-

linear effects. Three sets of models were fit. Full models included age and 

age-by-sex interaction terms represented using penalized smoothing splines 

with smoothing parameters selected by restricted maximum likelihood. For 

each modality in turn, for each gray matter parcel p, a model of form (1) was 

fit:  

{GMD, GMV, GMM, CT}p ~ Sex + s(Age) + s(Age * Sex)                      (1) 

where s() represents a penalized smoothing spline. The dimension of the 

basis used to represent the smooth terms was limited to a maximum of 5 in 

all models. Reduced models were fit in order to obtain accurate p-values for 

the main effects of sex and age. Specifically, model (2) omits the interaction 

term and was fit for each parcel in order to obtain p-values for the main 

effect of sex. Model (3) omits sex entirely and was therefore fit separately for 

each sex s in order to obtain p-values for the main effect of age. 

{GMD, GMV, GMM, CT}p ~ Sex + s(Age)                            (2) 
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{GMD, GMV, GMM, CT}s, p ~ s(Age)                                     (3) 

Models of form (3) were also fitted at the whole brain level, using mean 

GMD and CT (weighted by number of voxels in each parcel), and total GMV 

and GMM, as separate dependent variables. 

{MeanGMD, MeanCT, TotalGMV, TotalGMM}s, p ~ s(Age)                 (4)   

In each case, p-values were corrected for multiple comparisons by 

controlling the false discovery rate (FDR; Benjamini and Hochberg method; 

q-value = 0.05). 
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Table 2.1 Summary statistics of regional gray matter measures averaged by MNI label. 
SD, standard deviation; CV, coefficient of variation (= SD/mean * 100); N total, total 
number of parcels within MNI label (of 1625).



RESULTS 

Whole-brain age-related effects: Gray matter density increases while volume and 

thickness decrease


We sought to characterize age-related effects and sex differences at the whole 

brain and regional level on three independent gray matter measures, GMD, 

GMV, and CT, and a derived measure, GMM = GMD * GMV. At the whole brain 

level, we find that total brain GMV and CT decrease from childhood to young 

adulthood (8 to 23 years) in accordance with previous studies. In contrast, 

mean brain GMD increases during the same period. Whole brain GMM shows 

only a modest decrease. Figure 2.2 shows plots of fitted values converted to 
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Figure 2.2 Density increases in adolescence while other measures largely decrease. 
Females have higher density and lower volume. Plots show fitted values of whole-brain 
gray matter measures against age for the two sexes. GMD and CT were averaged 
across the brain (weighted by N voxels in each parcel), and GMV and GMM were 
summed. To make results comparable across measures, they are plotted as 
percentages: 100% is defined as the fitted value for males at 8 years of age. Shaded 
bands correspond to 2 SE of the fit (~95% confidence interval)



relative percentages (fitted values for 8 y.o. males are defined as 100%) 

derived from whole brain models (model of form 4 under Materials and 

Methods, Age-related effects and sex differences). Importantly, GMD is most 

sensitive to age: 30% and 40% of variance of mean brain GMD is explained by 

age at scan time for males and females respectively. CT follows with 

respective values of 30% and 24%, while only 7% and 10% of variance of total 

brain GMV is explained by age for males and females respectively. 

Whole-brain sex differences: Females have lower volume, higher density than males 


Females were found to have lower total GMV than males, as expected by 

known sex differences in average head and brain size. At the same time, 

however, we show that females have higher mean GMD than males. Total CT 

was not significantly different between the two sexes in our analysis (Figure 

2.2). 

 Regional variability in age-related and sex effects


To achieve regional specificity, we created a high-resolution parcellation 

covering the whole brain gray matter and consisting of 1625 regions. To 

summarize the large number of regional results, each of the 1625 gray matter 

parcels was assigned one of nine MNI labels (Frontal Lobe, Temporal Lobe, 

Parietal Lobe, Occipital Lobe, Insula, Caudate, Putamen, Thalamus, and 

Cerebellum), as defined by the MNI atlas in FSL. Table 2.1 presents summary 

statistics for each measure aggregated by MNI label. GMM and GMV had the 
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highest coefficient of variation (mean 

CV = 26.7 and 26.0, respectively), 

followed by CT (mean CV = 15.6). GMD 

showed the lowest CV (mean CV = 3.7). 

Parcel-wise GAMs were fitted to 

investigate the regional variability of 

age-related and sex effects in our 

sample (1625 parcels for GMD, GMV, 
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Table 2.3 Generalized additive models: FDR 
threshold and median p values. M, Male; F, 
Female; Threshold, unadjusted p value 
corresponding to FDR q value of 0.05; 
Median, median of unadjusted p values 
surviving FDR correction.

Table 2.2 Generalized Additive Models: Main effects and interaction by MNI label: 
Percentage of parcels with significant effects after FDR correction. M, Male; F, Female



and GMM; 1339 for CT). Table 2.2 shows the percentage of parcels with 

significant main effect of age, main effect of sex, and age-by-sex interaction 

after FDR correction (q = 0.05), aggregated by MNI label. GMD showed 
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Figure 2.3 Percentage net change and variance explained by sex and modality. A, For 
each parcel, the percentage net change was calculated as follows: (fitted value at 23 
fitted value at 8)/(fitted value at 8) 100%. GMD increased virtually throughout the brain, 
while the other modalities show mostly decreases. Females showed a greater increase 
in density than males throughout the brain. B, Percentage variance of each measure 
explained by age. GMD showed the highest R2 values, followed by CT. High bilateral 
symmetry on all maps suggests biological plausibility. Interactive movies including all 
axial slices in this figure are available on-line at https://egenn.github.io/gmdvdev 



significant age effects throughout the brain (99% of parcels in males, 99.9% 

in females), followed by CT (89% males, 88% females). GMV, on the other 

hand, showed significant age effects only in 52% and 65% of parcels in males 

and females respectively, while the numbers for GMM were 41% and 33%. Sex 

effects were strong for GMD, GMV, and GMM. Indeed, main effect of sex was 

more widespread than main effect of age in GMV and GMM. Sex effects in CT 

were present in a minority of regions across the whole brain, but in just over 

half of all temporal and parietal parcels. Age-by-sex interactions were 

virtually limited to GMD. Table 2.3 shows the unadjusted p-value 

corresponding to FDR q-value of 0.05 and the median of unadjusted p-values 

surviving FDR correction. 

To study the direction of age-related effects in each parcel, the net 

change from youngest to oldest was estimated by subtracting the fitted value 

at 8 years from the fitted value at 23 years for each modality, sex, and region 

and converted to a percentage (by dividing with the fitted values at 8 years). 

Net change for parcels not surviving FDR correction was set to zero. GMD 

increased, on average, within all MNI labels, while GMV and CT decreased. 

Mean GMM decreased in all MNI regions other than the temporal lobe, insula, 

and cerebellum. The bilateral insula stands out showing the highest increase 

in GMD and GMM of all MNI regions. To characterize each parcel’s sensitivity 

to age, we examined each model’s adjusted R2, denoting percent variance of 

each modality’s regional values explained by age. Table 2.4 lists R2 and 
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percent change for each modality. Averaging by MNI label masks the 

variability within each label, for example, a lobe may on average decrease in 

volume, but some parcels within it may increase. For this reason, Table 2.4 

includes numbers of individual parcels with a net positive and net negative 

change from 8 to 23 years within each MNI label. Brain slices mapping net 
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Figure 2.4 Sex differences by modality by MNI label against age. The difference of male 
and female fitted values for each modality for each MNI label was calculated at each 
year from 8 to 23 years of age. This plot highlights qualitatively how sex differences vary 
with age, in most cases in a nonlinear fashion (a constant sex difference in any measure 
would appear as a horizontal line). Note that only in CT the direction of the difference 
changes in frontal and occipital lobes as well as the bilateral insula from a male to a 
female advantage.



change and R2 for each modality are shown in Figure 2.3 and are available in 

interactive format online (https://egenn.github.io/gmdvdev.html). 

Figure 2.4 helps describe how development modulates sex effects by 

plotting the average difference of male and female fitted values per modality 

per MNI region by age from 8 to 23 years. Males and females have no 

differences in GMD at age 8, but females start to lead soon thereafter 

throughout the brain. Males have higher GMV and GMM on average in each 

MNI region throughout this age range. Only CT shows a change in the 

direction of sex differences with age. Males have higher CT in bilateral insula 

until about age 12 and in frontal and occipital lobes until age 15, at which 
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Table 2.4 Net percent change from 8 to 23 years and variance explained by MNI label. 
Pct, Percent change of fitted values from 8 to 23 years. N ↑, Number of parcels with 
positive net change (increase); N ↓, Number of parcels with negative net change 
(decrease). Only parcels that survived FDR correction have been considered.

https://egenn.github.io/gmdvdev.html)


points the effect reverses leading to a female advantage. In most cases, the 

sex differences have a nonlinear relationship with age. 

GMM largely resembles GMV, not GMD


We defined GMM as the product of GMD and GMV in order to study a native-

space equivalent of modulated density, a very popular measure in structural 

neuroimaging studies. GMM showed age-related effects that, for the most 

part, closely paralleled those of GMV (Figure 2.5). This is probably because 

GMV has much higher variance than GMD (Table 2.1), and consequently 
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Figure 2.5 Intermodal correlations averaged by MNI label. Pairwise spearman 
correlations (rho) were estimated between the fitted values of model 3 (top row) of all 
gray matter measures to summarize the similarity of age-related effects among 
modalities and between their residuals (bottom row). Brain slices with these results are 
available on-line at https://egenn.github.io/gmdvdev/imcor.html. D, Gray matter density; 
V, gray matter volume; M, gray matter mass; T, cortical thickness.



contributes much more to the variance in GMM explained by age than GMD 

does. Despite this, three MNI regions showed, on average, opposite direction 

of net change in GMM than in GMV, i.e. an increase instead of a decrease. 

This was observed in both males and females, in descending order of 

magnitude, in the insula, the temporal lobe, and the cerebellum (Table 2.4).  

Development modulates intermodal relationships among structural measures


To summarize the differences in age-related effects among the four measures 

with a single quantity, we calculated pairwise correlation coefficients of fitted 

values for our sample’s age range (8 - 23 y.o.; Figure 2.5, top row). Spearman 

correlation was used as most fitted values are non-linear. As expected from 

the results above, GMD was negatively correlated with GMV and CT 

throughout the brain and cortex respectively. GMM was positively correlated 

with GMV and CT in all MNI regions, on average, with the exception of the 

insula. Looking at the same pairwise correlations among the residuals, i.e. 

after removing the effect of age, we see that most correlations are positive, 

with notable exception of the density and thickness pair in the insula (Figure 

2.5, bottom row). Intermodal correlations of residuals help suggest what 

relationships may look like in the absence of an age effect but are no 

substitute for directly examining separate age bins, which should ideally 

extend across the lifespan. 
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DISCUSSION 

Despite extensive use of different MRI-derived gray matter measures in the 

literature, very few attempts have been made to directly compare them or 

their developmental patterns, and they are often wrongly assumed to be 

equivalent. This study shows distinct age-related effects and sex differences 

on whole brain and regional measures of gray matter density (GMD), volume 

(GMV), mass (GMM = GMD * GMV), and cortical thickness (CT) in a cross-

sectional dataset of 1189 youths aged 8 to 23 years drawn from the 

Philadelphia Neurodevelopmental Cohort. A custom T1 preprocessing pipeline 

and a novel high-resolution gray matter parcellation were created in order to 

produce unbiased gray matter segmentations without use of priors, and to 

extract native space measures without any interpolation or smoothing. Our 

findings partly challenge the widely-held, though vague, view that “gray 

matter declines” from childhood to young adulthood, and provide a more 

complete description of developmental gray matter differences. 

Not all gray matter declines in adolescence


Mean brain GMD increases from childhood to young adulthood, while total 

brain GMV and mean CT decrease. Total GMM only shows a slight decrease 

from 8 to 23 years, suggesting that an increase in density may partly counter 

a decrease in volume. Regionally, GMD increases virtually throughout the 

brain. GMV, on the other hand, decreases on average in all lobes and 
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subcortical regions, but there are parcels within those broad regions whose 

volume increases, particularly in frontotemporal cortex. Future work will 

determine whether areas that expand during adolescence despite an overall 

decline in volume support the enhancement of specific neurocognitive 

functions. 

Age-related effects and sex differences in density may help understand cognitive 

abilities 


We know that higher GMV correlates with higher neurocognitive performance 

in adults (Gur et al., 1999; McDaniel, 2005), which gives rise to two apparent 

paradoxes: 1. Adolescence is characterized by a sharp rise in neurocognitive 

performance (Gur and Gur, 2016), despite a decline in GMV. 2. There are no 

significant sex differences in general intelligence (Halpern et al., 2007), 

despite a male advantage in GMV. Our results suggest that age-associated 

volume decrease might be compensated for by increasing gray matter density 

during adolescence and lower volume in females might be compensated for by 

higher density throughout the brain. 

Biological basis of structural MR measures: the need for large scale, quantitative 

histological – MRI studies 


The above findings beg the question: What do GMD and the other gray matter 

measures mean in terms of biology? Multiple studies have shown that the T1 

signal is sensitive to myelin and iron content, whose distributions overlap 
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significantly within cortical gray matter (Stüber et al., 2014). Surprisingly, 

only few attempts have been made to quantify the relationships among 

histological features and MRI-derived structural measures. A large number of 

studies using T1-weighted imaging to quantify gray matter have focused on 

neurodegeneration. Such diseases result in neuronal loss which causes direct 

decreases in all gray matter measures. This may partly explain the confusion 

that has led to these measures often being considered highly correlated or 

equivalent, and even grouped together in meta-analyses (for example, see 

(Shao et al., 2014). However, in the context of normal brain structure, or in 

brain disease without extensive neuronal loss, including most psychiatric 

disorders, regional and global variation in different gray matter measures 

may be less correlated, even anti-correlated, as seen here between GMD and 

GMV. We expect that MRI-derived gray matter measures are differentially 

determined by a set of histological factors, including neuronal and glial 

number and size, dendritic arborization, number of axonal projections and 

extent of myelination. Their effects will vary by age, brain region, and cortical 

layer.  

In adolescence, MRI-estimated decline in gray matter volume is 

generally attributed to a combination of synaptic pruning of exuberant 

connections, a regressive event, and increasing myelination, a progressive 

event, both essential aspects of normal development (Stiles and Jernigan, 

2010). While pruning results in a direct reduction in neuropil, myelination 
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may have multiple direct and indirect effects on T1-based gray matter 

quantification. White matter myelination and expansion may result in a 

physical outwards shift of the gray-white matter boundary causing gray 

matter to compact and leading to decreases in GMV and CT and increases in 

GMD. Alternatively, myelination near the gray-white border may increase 

signal intensity in voxels nearest the border enough to switch their 

classification from gray to white, which would lead to reduction of volume 

and thickness measurements but have no effect on density, since these voxels 

would be now excluded from any gray matter parcels. At the same time, 

cortical gray matter also contains substantial amounts of myelinated fibers 

with significant regional variability (Nieuwenhuys, 2013) and intracortical 

myelin also increases during adolescence (Grydeland et al., 2013). Increasing 

cortical myelination would lead to a decrease in estimated GMD, which means 

that GMD increases reported in this study are possibly underestimates. 

Rabinowicz et al performed stereologic morphometry in six males and five 

females aged 12 to 24 years and reported significantly higher neuronal 

densities and neuronal number estimates in males than females, but no sex 

differences in cortical thickness, suggesting higher neuropil mass / increased 

neuronal processes in the female cortex (Rabinowicz et al., 2009), which 

might explain our findings of higher GMD in females. 

We chose to compare four different measures of regional gray matter in 

volumetric space. Other morphometric and morphological measures like 
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cortical surface area and gyrification index can also be derived from T1 images 

in surface space analyses. The limited positive correlation we found between 

GMV and CT age-related effects is probably explained by independent 

changes in surface area and gyrification (Raznahan et al., 2011). While the 

majority of brain regions show significant sex effects on GMV as expected, a 

minority of regions showed a significant sex effect on CT. Considering that 

gray matter volume roughly equals surface area times cortical thickness, we 

expect surface area to exhibit more extensive sex differences than thickness. 

We limited our analysis to volumetric space measures in order to use the 

same parcellation for each measure and avoid the extra resampling and 

registration errors introduced in the conversion between the two spaces 

(Klein et al., 2010). For the same reason, care must be taken when comparing 

volumetric and surface space analyses. 

Given the important gaps in our understanding of the links between 

biology and imaging, it is crucial to design large-scale, combined MRI and 

histological quantification studies to fully characterize the neurobiological 

basis of raw MRI signals and derived measures. Biophysical modeling of MR-

derived measures will enable accurate noninvasive in vivo prediction of 

histological features (Stiles and Jernigan, 2010). This will be crucial in 

elevating the potential of neuroimaging in the investigation of nervous 

system physiology and pathology, disease diagnosis, and treatment 

monitoring. 

�31



Limitations and implication for future work: Phenotypes of structural brain 

development and links to cognition


The cross-sectional design of this study was its main limitation. Ongoing 

longitudinal studies will provide true measures of developmental change and 

allow the analysis of inter-individual differences in development. Future 

studies would also benefit from inclusion of more MRI modalities. New 

diffusion-weighted MRI techniques like neurite orientation dispersion and 

density imaging (NODDI) may provide rich information on gray matter 

structure and complement T1 and T2 signals (Zhang et al., 2012). Histological 

morphometry has shown cortical layer- and type-specific changes in 

neuronal cell bodies (Rabinowicz et al., 2009), which cannot be resolved with 

today’s common MRI sequences but this may be possible in the future. We 

must note that while different segmentation software employ similar 

methods for GMD estimation, results are dependent on parameter selection. 

Correlation with histology will also help guide these choices and optimize 

pipelines to produce measures with maximal biological interpretability. 

Our results demonstrate that GMD, GMV, and CT must be considered 

distinct and complementary. They also further emphasize the need for 

nonlinear modeling and accounting for sex differences. We found that GMD 

and CT are most sensitive to age, which makes them prime candidate 

biomarkers of brain development. In contrast, modulated density or GMM 

may not be very informative in a developmental context, and it is best to 
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consider GMD and GMV independently. We also show that intermodal 

relationships change with age, which further emphasizes that neuroimaging 

findings should not be generalized from one age period to another. We have 

previously shown that structural covariance networks develop during 

childhood to mirror adult functional intrinsic connectivity networks (Zielinski 

et al., 2010a). Ongoing work aims to identify how different structural 

measures can be best applied to study cognition and disease.  

As we advance from group-level to individual-level studies, from 

unimodal to multimodal analyses, and from descriptive to predictive models 

with the aim of integrating neuroimaging into clinical practice, it is essential 

to make best use of all available data. The first step is to understand available 

measures and the relationships among them. Development is a critical 

dimension on which these relationships may vary and adds to the challenge 

and the importance of this task. 

The work in this chapter was published in the Journal of Neuroscience (Gennatas 

et al., 2017) and was featured on the cover of the May 17, 2017 issue (http://

www.jneurosci.org/content/37/20/i) 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3. GRAY MATTER INCREASINGLY PREDICTS COGNITIVE 
PERFORMANCE DURING ADOLESCENCE 

INTRODUCTION 

The prospect of predicting people’s cognitive ability has always fascinated 

man. A large part of Neuroscience, and particularly Cognitive Neuroscience, is 

broadly concerned with understanding how the brain gives rise to the mind. A 

complete characterization of the vast networks of interactions from genes and 

molecules to cells, circuits, systems, to the whole brain and, finally, behavior 

may be very far off. However, it is possible to use brain data to predict clinical 

and cognitive outcomes, despite an incomplete understanding of the 

underlying biology. Such work can feed back into both basic neuroscientific 

research and clinical applications. 

Early work in the field looked into correlations of intelligence with 

measures of head size and, later, MRI-derived estimates of whole brain 

volume. A meta-analysis of 37 datasets estimated population correlation 

between brain size and intelligence at 0.33 (McDaniel, 2005). Later studies 

focused on regional correlations, attempting to localize brain regions most 

contributing to intelligence, but were limited to mass-univariate analyses 

(Narr et al., 2007), which ignore relationships among brain regions and 

interactions. Multivariate predictive models trained on structural brain data 

have mostly focused on age prediction (Franke et al., 2012), in some cases 

relating brain development to cognition (Erus et al., 2014). 
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In this study, we train models to compare the ability of four structural 

brain measures derived from T1-weighted MRI to predict performance in a 

verbal reasoning task collected on the Philadelphia Neurodevelopmental 

Cohort using the Computerized Neurocognitive Battery (CNB) (Gur et al., 

2010). The CNB has been widely administered in multiple settings and 

populations and translated to over fifteen languages. Instead of deriving a 

study-specific general factor, we chose a verbal reasoning (completing 

analogies) as the outcome of interest, which is known to correlate strongly 

with overall performance (Moore et al., 2015) and is one of the most 

commonly tested domains in standardized and other aptitude tests. We 

hypothesized that prediction accuracy of cognitive performance from gray 

matter measures increases with age, but made no prediction as to which 

measure would be the best predictor. We report that gray matter alone can 

predict up to 20% of variance in verbal reasoning performance of young 

adults estimated on out-of-sample data using 10-fold cross-validation. 

MATERIALS AND METHODS 

Subjects and neuroimaging


Subject selection and quality assessment of T1-weighted imaging was 

performed as described in Chapter 2, Materials and Methods. Of the initial 1189 

subjects, 899 (478 females) with a valid CNB collected within twelve months 

of the structural MRI scan were selected for this study. We used the same T1-
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derived measures of gray matter described in Chapter 2: gray matter density 

(GMD), gray matter volume (GMV), gray matter mass (GMM = GMD x GMV), 

and cortical thickness (CT), extracted from the same high-resolution 

parcellation (PNC-GMD1625, Figure 2.1). In order to study the effect of age on 

the prediction of cognitive performance and check for an interaction between 

brain data and age on prediction accuracy, the sample was stratified on age by 

splitting into terciles: Children (N = 299, 153 females; 8 – 12.7 years), 

Adolescents (N = 373, 192 females, 12.7 – 17.3 years), and Young Adults (N = 

227, 133 females, 17.3 – 22 years). 

Generalized Additive Models: Whole brain data & age


Models were trained to predict verbal reasoning scores from gray matter 

measures at two different scales: whole brain data (single value per gray 

matter measure) and regional brain data derived from the PNC-GMD1625 

parcellation (GMD, GMV, GMM: N = 1625; CT: N = 1339 gray matter parcels). 

Whole brain mean GMD, total GMV, total GMM, and mean CT were used to 

predict verbal reasoning in each age tercile using Generalized Additive Models 

(GAMs) within the rtemis package (see Chapter 4). The learnCV function of 

rtemis was used to perform 10-fold cross-validation for model testing and 

average test set mean squared error (MSE) was calculated for each gray 

matter measure for each age group. 
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A common concern in developmental neuroimaging studies is 

controlling or correcting predictors and/or outcomes for age. Since most, if 

not all, measures of brain and performance and indeed many unrelated 

measures and artifacts correlate with age, it is easy to derive spurious 

correlations driven by age. However correcting for age can lead to signal loss 

and/or introduction of artifact. We chose not to age-regress either the 

neuroimaging data or the cognitive scores and instead used age stratification 

as described above. On top of that, cross-validated prediction of verbal 

reasoning scores from age alone was performed for each modality for each 

age group using Generalized Additive Models to measure directly the 

predictive power of age on performance.


Gradient Boosting: High dimensional regional brain data 


Predictive models from high dimensional data were trained for each modality 

for each age group using gradient boosting of linear models as implemented 

in the XGBoost package (Chen and Guestrin, 2016). All training was performed 

again using the learnCV function within rtemis (Figure 3.1) to perform nested 

resampling for model tuning and testing. 10-fold cross-validation was used 

for testing (outer resampling). For each fold, 10 stratified bootstraps of the 

training set (inner resampling) were used to tune the L2 regularization 

weight (range: 0 - .3), and the number of boosting iterations using an early 

stopping rule (no improvement in validation set MSE for fifty iterations). 
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Models were trained with this procedure to predict verbal reasoning scores 

from GMD, GMV, GMM, and CT regional values, in turn, for each age tercile. 

Boosting of linear models was used for these high-dimensional datasets as 

execution times are orders of magnitude shorter than boosting trees. 

Parcelwise (mass-univariate) correlations were estimated between each gray 

matter measure and verbal reasoning scores to qualitatively compare 

univariate and multivariate effects at each age group.  

RESULTS 

Regional gray matter correlates weakly with verbal reasoning


Mean parcelwise correlations of GMV with performance are stable from 

childhood to adolescence at 0.10 and increase slightly into young adulthood to 

0.15. On the other hand, an average correlation of 0.12 between GMD and 

performance in children diminishes to -0.04 in adolescence and -0.07 in 
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Example learnCV call for model tuning and testing:

LAN.GMD.MF3 <- learnCV(x = GMD.MF3, y = LAN.MF3, 'xgblin', 
                       params = list(lambda = seq(0, .3, .1), 
                                     resampler = 'strat.boot'), 
                       outdir = '/Projects/CNBpredict/LAN.GMD.MF3/') 

Figure 3.1 This learnCV command will train 10 tuning models + 1 final model for each 
of 10 folds, save an rtemis object containing its full output in an .Rds file along with 
PDF files of plots for True vs Fitted and True vs. Predicted values and a density plot of 
MSE in the specified output directory.



young adulthood. Density plots of correlation values between regional gray 

matter and verbal reasoning are shown in Figure 3.2. 

Whole brain volume is a good predictor of verbal reasoning


At the whole brain level, Generalized Additive Models reveal that GMV is the 

best predictor of performance, particularly in the oldest group, where it 

explains 20% of the variance, estimated after 10-fold cross-validation. Mean 

whole brain GMD and CT fail to predict performance. GMM (= GMD x GMV) 

was included for comparison and is shown to track GMV for the most part and 

will not be discussed further. 
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Figure 3.2 Density plots of parcelwise Spearman correlations between regional gray 
matter measures and verbal reasoning (GMD, GMV, GMM: N = 1625; CT: N = 1339 
parcels). GMD, gray matter density; GMV, gray matter volume; GMM, gray matter mass; 
CT, cortical thickness.



Multivariate models of regional GMD increasingly predict performance


Using the full high-dimensional dataset of each modality, we trained 

multivariate models using an efficient procedure of linear model boosting to 

predict verbal reasoning. Patterns of GMD are the best predictors of 

performance, showing an increase in prediction accuracy from childhood to 

young adulthood, when it reaches 20% of explained variance, on average, 

after 10-fold cross-validation. GMV and CT trail behind at around 10% of 

variance explained in the young adult group. 

Age predicts performance only in children


To ensure that the above results are not driven by shared correlations of 

predictors and outcome with age, we trained Generalized Additive Models to 

predict performance from age alone for each age group. Interestingly, age 

explained 13% of variance in verbal reasoning scores in the children’s group 
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Figure 3.3 Prediction of performance using Generalized Additive Models of whole brain 
data



and not at all in the other two (R-squared = -0.92% and -1.71% for 

adolescents and young adults respectively). This suggests that mean regional 

GMD correlation within the children group may be driven by age (mean r = 

0.12, Figure 3.2), and demonstrates that the predictive power of whole brain 

GMV or regional GMD in the young adult group are not driven by age at all 

(Figures 3.3, 3.4). 

DISCUSSION 

Following the findings in Chapter 2 where we showed that different gray 

matter measures exhibit distinct age-related and sex effects during 

development from childhood to young adulthood, we suggested that they 

should be treated as independent and complementary. We then set out to 

examine how they compare in their ability to predict a measure of cognitive 
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Figure 3.4 Prediction of performance using gradient boosting of regional gray matter 
measures 



performance. We chose to study verbal reasoning, a measure that correlates 

very highly with overall intelligence, and which was collected on the 

Philadelphia Neurodevelopmental Cohort as part of the Computerized 

Neurocognitive Battery. We have previously shown that structural covariance 

of modulated gray matter density (volume) increasingly mirrors resting state 

functional connectivity from childhood to young adulthood (Zielinski et al., 

2010b). We hypothesized that structural-functional relationships grow 

stronger with age as developmental structural changes slow down and 

functional activation patterns stabilize. 

We showed that prediction accuracy of verbal reasoning scores 

increases with age as predicted. Interestingly, whole brain GMV alone was a 

good predictor of verbal reasoning, explaining 20% of variance, but 

multivariate patterns of GMV, using measures from 1625 gray matter regions 

as predictors, failed to reach the same level of accuracy, explaining only 10% 

of variance. In contrast, mean brain GMD did not predict performance at all, 

but multivariate analysis of GMD explained 20% of variance in performance. 

This example emphasizes the power of multivariate models in neuroimaging 

even in the absence of strong mass-univariate results. 

The main limitation of this work was the sample size after dividing 

into three age bins, which limited performance of the multivariate models. 

Because of the small sample size, the two sexes were considered together. 

Future work would certainly benefit from studying more age bins of narrower 
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age range each, separately for males and females.  Interestingly, our results 

suggest that a sweet spot exists in the resolution of brain parcellation, which 

would likely be different for each measure and should ideally be tuned in the 

future. Ongoing work is looking to address this in two ways: through direct 

comparison of multiple parcellations of variable resolution, and by sparse 

decompositions of high resolution data with variable number of dimensions 

and sparsity.  
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4. ADVANCED BIOMEDICAL DATA ANALYSIS WITH rtemis 

INTRODUCTION 

Advances in biomedical science are helping generate an increasing volume 

and variety of data, at increasing velocity, though often of uncertain veracity 

(http://www.ibmbigdatahub.com/infographic/four-vs-big-data). Along with 

increased requirements for data warehousing and privacy control, this raises 

the need for sophisticated analytic methods to extract insights and guide 

decision making. Group-level hypothesis testing is slowly being replaced by 

subject-level predictive modeling (Bzdok et al., 2016). Mass-univariate 

analyses of unimodal data are increasingly supplanted by multivariate 

analyses of high-dimensional, multimodal data. As data science is embraced 

across fields and industries, the benefits of research and development at the 

theoretical and applied level are shared by all. However, in biomedical 

research, access to the best available algorithms is often limited by 

researchers’ technical expertise. A growing, inhomogeneous ecosystem of 

software packages running on multiple programming languages and often 

lacking good documentation adds an extra layer of complexity on top of the 

variety of algorithms and approaches. We present rtemis, an open source 

package written in R designed to make advanced data analysis and 

visualization more efficient and accessible. rtemis provides a unified 

framework for data analysis by taking advantage of the R language and some 

of the best algorithms and packages available. 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IMPLEMENTATION 

rtemis is implemented in the R language (The R Project for Statistical 

Computing; https://www.r-project.org), a free and open source language for 

statistical computing and graphics, the de facto programming language of 

statisticians. It capitalizes on multiple existing, high quality R packages 

available either through the Comprehensive R Archive Network (CRAN; 

https://cran.r-project.org), the Bioconductor repository of open source 

software for bioinformatics (https://www.bioconductor.org), or directly 

through public GitHub repositories (https://github.com). It runs on all 

operating systems that support R, which include macOS, Linux, and Windows. 

Two main advantages of the R language are: 

• It is built specifically for quantitative analysis /statistical computing 

and makes most common and a lot of advanced quantitative and statistical 

functionality directly accessible. 

• The collection of statistics-related contributed packages in R far 

surpasses that of any other language. 

Design Principles 


A core principle behind the design of rtemis was to make it as easy and fast as 

possible for the user to get from data to results in a reproducible fashion even 

without much prior experience in data analysis. The following are some of the 

main design goals of the package: 
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• Minimize the amount of code that needs to be input manually by 

the user, thereby minimizing user time and the probability of user error. 

• Minimize computation time (running time) by allowing parallel 

(and distributed) execution where possible. 

• Provide a user friendly and intuitive interface; minimize need to 

consult the manual.  

• Make data analysis pipelines more transparent using informative 

messaging, error reporting, and logging (for example, see Figure 4.1). 

R6 class system


During early development, rtemis was implemented using classic S3 methods 

(Chambers, 1991). As the project grew, the need arose for formal object and 

method definitions. Objects and associated methods were built initially using 

all available class systems for comparison: S4, Reference Class (RC, 

sometimes referred to as R5), and R6. The last two were preferred for their 

ability to include methods within the object itself (similar to Python objects; 

Figure 4.2). RC and R6 objects also use pass-by-reference (again similar to 
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Figure 4.1 Error reporting in rtemis attempts to pinpoint the source of the problem and 
relay in simple language. In this example, dataPrepare, a helper function which 
prepares data ahead of all model training, checks whether the correct number of cases 
is present in predictors and outcome.



Python), which can be advantageous when manipulating large datasets as 

they help reduce memory load. R6 was finally chosen for its lightweight and 

fast implementation (https://cran.r-project.org/web/packages/R6/vignettes/

Performance.html), and its backing by core R projects and developers.  

Classes have been implemented for supervised learning (rtMod: all 

models; rtModBag: - bagged models; rtModCV: - cross-validated models), 

clustering (rtClust), decomposition (rtDecom), and cross-decomposition 

(rtXDecom). 

VISUALIZATION 

It is difficult to overstate the importance of data visualization. It is an 

essential part of data analysis that can play an invaluable role before and after 

each preprocessing or modeling step. rtemis supports both static and 

dynamic/interactive graphics. The mplot3 family of functions is responsible 
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Figure 4.2 Example of an R6 object of class ‘rtMod’ used for all supervised learning. 
Attributes (e.g. predicted - outcome values predicted by the model from the testing 
dataset) and functions (e.g. plotPredicted - plots Predicted vs. True outcome values) 
are both accessible directly from within the object.

https://cran.r-project.org/web/packages/R6/vignettes/Performance.html
https://cran.r-project.org/web/packages/R6/vignettes/Performance.html


for producing static graphics in rtemis. It uses layers of customized base 

graphics to produce publication-quality plots. Table 4.1 lists the available 

mplot3 functions and their description. All plots in this thesis were created 

using mplot3. 
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Table 4.1 The mplot3 family for static graphics

Function Name Input Data Description

mplot3
vector x / 

vectors x & y
Alias for mplot3.x and mplot3.xy depending 

on input

mplot3.x vector x
Index, Timeseries, Density, Histogram, QQ-

line plots

mplot3.xy vectors x & y
Scatter plot; incl. fit lines estimated with any 

rtemis learner

mplot3.xym vectors x & y
Combination of mplot3.xy scatter & mplot3.x  

marginal plots (density and/or histogram)

mplot3.fit vectors x & y
Alias for mplot3.xy with equal axes, 

diagonal, and fit lines

mplot3.bar
vector or 
matrix x Barplots

mplot3.box matrix x Boxplots

mplot3.heat matrix x
Heatmap with optional hierarchical 

clustering  

mplot3.conf
confusion 

matrix Confusion matrix for classification results

mplot3.roc
rtemis 

classification ROC curve for classification models

mplot3.surv
survival::Surv 

object Kaplan-Meier survival function

mplot3.img matrix x False color 2D image

mplot3.marginal
rtemis 

regression 
Build a scatter plot by varying one 

independent variable 

mplot3.cart rpart model
Draw a decision tree trained  by recursive 

partitioning

mplot3.adsr A, D, S, R, I, O
Draw an envelope generator based on Attack 

time, Decay time, Sustain level, Release 



Dynamic graphics are created with the dplot3 and dplot3.heat functions 

built on the open source plotly platform (https://plot.ly/). They are viewable 

either within the RStudio Integrated Development Environment (IDE) or in a 

web browser (Figure 4.3). 
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Figure 4.3 Screenshot of a dynamic plot drawn with dplot3. Hovering the mouse over 
scatter points in this case displays raw and fitted values. Visibility of elements can be 
toggled by clicking on their name in the top-left legend.

https://plot.ly/)


UNSUPERVISED LEARNING: Clustering & Decomposition 

Unsupervised learning attempts to find structure in unlabeled data, i.e. 

without being guided by an outcome / dependent variable (cf. Supervised 

Learning). Consider an n x p dataset (n cases by p variables). Clustering, or 

Cluster Analysis, divides the n cases into k groups, resulting in a k x p 

dataset (k < n), based on a similarity / distance measure derived from the p 

variables. Matrix decomposition or factorization, on the other hand, projects a 

high dimensional dataset to a lower dimensional space, i.e. from n x p to n x 

p’ (p’ < p). If the original dataset is known or speculated to consist of a 

large number of measurements (variables) originating from a small number 

�50

14 16 18 20 22 24 26

6
8

10
12

14
16

18

1st NMF component

2n
d 

N
M

F 
co

m
po

ne
nt

HOPACH on iris

1
2
3

14 16 18 20 22 24 26

6
8

10
12

14
16

18

1st NMF component

2n
d 

N
M

F 
co

m
po

ne
nt

NMF on iris

setosa
versicolor
virginica

A B

Figure 4.4 Unsupervised learning on the iris dataset (Anderson E, 1935). A Non-
negative matrix factorization projects the dataset to two dimensions. Color indicates 
true flower species. B Hierarchical Ordered Partitioning and Collapsing 
Hybrid (HOPACH) algorithm (van der Laan and Pollard, 2003) separates cases into 
three categories with little error without any knowledge of real labels.



of generators, or latent variables, decomposition can help recover them and in 

this can help gain insights into the true structure of the data. This is a 

common procedure in feature engineering. For example, variance in voxelwise 

neuroimaging brain data can be considered to result from the the action of a 

small number of networks which can be identified using decomposition 

algorithms, commonly Independent Component Analysis (ICA) for functional 

data. Tables A.1 and A.2 in the Appendix list algorithms available in rtemis for 

clustering and decomposition, respectively. Clustering functions begin with 

u.* and output an object of class rtClust, while decomposition functions with 

d.* and output an object of class rtDecom. For an example, se Figure 4.4. 

SUPERVISED LEARNING: Classification, Regression, Survival 

Supervised learning involves the prediction of an outcome of interest, or 

dependent variable, from a set of predictor variables, or independent 

variables, or features. The outcome may be a categorical or continuous 

variable. The process is called classification and regression, accordingly. 

Survival regression is a related approach that aims to predict time to an event 

(in medicine, usually death). All supervised learning function names in rtemis 

begin with s.* followed by the algorithm alias found in Table A.3. Some 

features of supervised learning in rtemis: 

• Input data is checked for consistency and type of model is 

inferred from type of outcome: vector of factors -> Classification, 
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numeric vector -> Regression, matrix of time and status -> Survival 

Regression 

• Automatic hyperparameter tuning: If more than a single value is 

provided for any parameter, grid search is automatically run by 

resampling the training set to create internal training and validation 

sets; the error is averaged across resamples for each combination of 

parameters and the combination minimizing error, on average, in the 

left-out sample is chosen. The final model is trained on the full 

training set using the identified parameters. Grid search can be 

exhaustive or randomized. 

• Sensible defaults: Algorithm hyperparameters are set to values 

likely to perform well under common conditions. If no such values 

exist, functions are set to automatically tune hyperparameters. 

• All learners output an object of class rtMod, which supports all 

standard R methods for trained models: coef, fitted, plot, predict, print, 

residuals, summary (Figure 4.5). 

• If an output directory is specified, the rtMod object is saved as an 

.Rds file (serialized R data file) along with plots of True vs. Fitted 

(training set) and True vs. Predicted (testing set) values in PDF format 

and a log text file with the full console output of the function. 
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learnCV: One-step model tuning and testing


learnCV is the main function for predictive modeling in rtemis. It accepts a 

matrix of predictors x and an outcome vector y, creates resamples using 

resample (Table A.5), and trains any rtemis learner (Table A.3) on each 

resample. The output is saved to an rtModCV object, which also inherits from 

the rtMod object. The function aggregates fitted, predicted, and true values 

across resamples and estimates error across resamples. 
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Figure 4.5 summary method on an rtMod object draws a panel of informative plots 
using mplot3



bagLearn: Bootstrap aggregating


Bootstrap aggregating (bagging) can be run automatically for most learners 

(those that do not include it by design). Specifying the bag.resampler.rtSet 

argument triggers bagLearn, an internal function that calls the originating 

learner function to train multiple resamples of the training set, produce 

predicted values from each using the testing set x.test and output each 

model’s prediction and their average in an rtModBag object, which inherits 

from the rtMod object. 

decomLearn: Decompose and learn


decomLearn takes advantage of the modular design of rtemis to tune a 

decomposer and train a learner using the low dimensional projections as 

predictors. Specifically, the function: 

• Accepts training and testing sets of predictors and outcome, x.train, 

y.train, x.test, y.test 

• Uses a resampler (Table A.5) to create resamples of x.train and 

y.train 

• For each resample: 

o Uses a decomposer (Table A.2) to decompose internal training 

sets using exhaustive or randomized grid search on parameter 

combinations - e.g. sparseness = seq(.1, 1, .1), nvecs = c(3, 5, 12) 

o Uses a specified tuner (any learner function;  Table A.3) to 

identify combination of parameters that minimizes prediction error 
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• Trains decomposition on full training set using identified 

parameters 

• Trains final learner (Table A.3) 

• Outputs an object of class rtDecomLearn 

CROSS-DECOMPOSITION 

Cross-decomposition refers to methods like canonical correlation analysis 

(CCA), which decompose two or more datasets in parallel. They aim to derive 

sets of projections, one projection from each input dataset in each set, such 

that projections in eash set are maximally correlated. rtemis supports sparse 

CCA using the PMA package (available on CRAN) modified to run in parallel, 

and more advanced sparse decompositions provided in the ANTsR package 

(https://github.com/stnava/ANTsR). Cross-decomposition functions available 

in rtemis begin with x.* and are listed in Table A.4. 

META-MODELING 

Meta-models are models whose input is the output of other models – i.e. 

models whose predictors are the estimates of other models. The process is 

commonly referred to as stacking (or blending, or stacked generalization) and 

has proven highly successful in many real world scenarios. The idea is that by 

pooling predictions from multiple base learners you can take advantage of 

different models’ strengths and produce a final prediction better than the best 

individual prediction - ideally. Top performing entries in data science 
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competitions have almost invariably used some form of stacking. rtemis 

currently includes functions to automate training of three types of meta-

models: the common approach of stacking outputs of different algorithms, 

here referred to as model stacking, and two custom meta-models we refer to as 

modality stacking, and feature-weighted stacking. 

Model stacking


Model stacking is probably the most common and straightforward type of 

stacking. Assume you want to predict an outcome y given an input matrix x. 

You have multiple learning algorithms available but do not know ahead of 

time which one will perform best (Wolpert, 1996). In model stacking, suppose 

you create training and testing sets x.train, y.train, x.test, and y.test, you would: 

• Split x.train and y.train into further training and testing sets based 

on r resamples: x.train’1…r,  y.train’1…r, x.test’1…r,  y.test’1…r 


• For each resample r, train a set of i base learners to map x.train’1…r to 

y.train’1…r and get predictions y.hat.test’(1…r, 1…i) from data x.test’1…r 


• Concatenate across r and train a meta learner to map predictions of 

base learners’ concatenated y.hat.test’.cc1…i to outcomes y.test’.cc 

• Train base learners on full training set x.train and get predictions 

y.hat.test1…i from data x.test 

• Pass y.hat.test1…i to the trained meta model to get final predictions 

y.hat.test.meta; estimate error by comparing to y.test 
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Modality stacking


Modality stacking is similar to model stacking but in this case base models 

differ by being trained on a separate dataset (modality) each (and may or may 

not use the same learning algorithm). For example, gray matter density, gray 

matter volume, fractional anisotropy, and regional cerebral blood flow can 

each be used to predict an outcome of interest. This procedure will often 

produce superior results to concatenating the datasets of different modalities 

into one extra wide dataset, as this exaggerates the p >> n problem (having 

many more predictors than cases), among other issues. It is implemented in 

the metaFeat function. 

Group-weighted stacking


In group-weighted stacking (GWS), base models differ by being trained on 

differently weighted versions of the full sample. This is useful if you suspect 

that a different pattern of features will predict the outcome in each subset. 

Each base model is trained on the full set of cases, but cases not part of the 

group are down-weighted. A parameter alpha (0 ≤ α < 1) determines the 

weight of non-group cases. For example, if we expect sex differences in the 

pattern of brain regions that predict cognitive performance, we can use GWS 

to obtain better prediction accuracy than if we trained a single, non-stacked, 

model on males and females together. The α parameter should be tuned for 

performance. GWS is implemented in the metaGroup function. 
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rtemis-POWERED WEB APPLICATIONS 

Many real-world scenarios require immediate access to visualization and data 

analytics, where the need for coding would be a major hindrance or simply 

prohibitive. Online dashboards, powered by open source or proprietary 

platforms, are becoming increasingly popular across fields and businesses 

and provide advanced functionality with point-and-click simplicity. We have 

taken advantage of the shiny web application framework  

(https://shiny.rstudio.com/) to create online, interactive web applications 

powered by rtemis. These applications load on any web browser and allow the 

user to access rtemis functionality without the need to use any R code. The 
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Figure 4.6 PNC Explorer allows rich interactive data exploration and visualization 
using mplot3 with point-and-click simplicity

https://shiny.rstudio.com/


web server is running rtemis  in the background, obviating the need to install 

R, rtemis, and its dependencies. 

A pair of web applications were created to visualize the complete data 

release of the Philadelphia Neurodevelopmental Cohort (PNC). PNC Explorer 

provides access to some of the main mplot3 plotting functionality in an 

interactive manner. It supports univariate and bivariate plotting: index, 

histogram, density, and scatter plots (Figure 4.6). It is paired with the PNC 

IMcor, which allows dynamic heatmap visualization of intra- and inter-

modal correlations of multiple imaging datasets: gray matter density, gray 
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Figure 4.7 PNC IMcor allows dynamic heatmap visualization of intra- and intermodal 
correlations using dplot3.heat



matter volume, mean diffusivity, regional cerebral blood flow, regional 

homogeneity, and amplitude of low frequency fluctuations (Figure 4.7). 

The goal is to provide free online access to a series of apps, where users 

can upload and visualize their own data. Such functionality can be very useful 

in biomedical research, and essential in data-driven clinical applications. 

DISCUSSION 

rtemis aims to make advanced data analysis accessible to all. Some of its 

primary target groups are biomedical researchers and, eventually, clinical 

practitioners. A cheatsheet which highlights the core components of the 

package is available online at: https://egenn.github.io/docs/

rtemisCheatsheet.pdf. The complete R-style manual can be found at: https://

egenn.github.io/docs/rtemisCheatsheet.pdf. A vignette with examples of code 

and corresponding output (also viewable within RStudio’s help viewer), is 

available at: https://egenn.github.io/rtemis/rtemis-vignette.html. 

The design of rtemis and its core of shared internal functions allows for 

easy expansion and addition of new algorithms for supervised or 

unsupervised learning in the future. The modular architecture makes it 

simple to build custom meta-models and other combinations of supervised 

and unsupervised learning.  

Current work on rtemis is focused on implementing interpretable 

machine learning algorithms. Current state-of-the-art algorithms provide 
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high accuracy at the expense of interpretability. Algorithms that are both 

highly accurate and interpretable will be profoundly beneficial to basic 

research by providing insights into effects and interactions of features within 

massive multivariate datasets and will also make possible the use of machine 

learning in clinical decision making. 
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5. DISCUSSION & FUTURE WORK 

NEUROIMAGING & THE BRAIN 

MR neuroimaging allows us to study human brain structure and function in a 

safe and noninvasive way and is an invaluable tool in advancing our 

understanding of normal brain physiology and pathology. It has already 

helped gain great insights into brain function, especially perception. At the 

same time, little progress has been made towards applying neuroimaging in 

clinical practice. Countless papers present weak or questionable findings on 

MR-derived measures without understanding of the underlying biology and 

do not hesitate to make extravagant promises that unlocking of the mysteries 

of brain disease and discovery of treatments are but a small step away. While 

such discoveries have not yet materialized and may be overdue, they are 

certainly possible. If neuroimaging is to deliver on its translational potential, 

studies require a solid link to biology and a path to application. 

In Chapter 2, we attempted to clear some of the confusion surrounding 

different gray matter measures. We showed that gray matter volume (GMV) 

and gray matter density (GMD) show opposite age and sex effects in 

adolescence and should be considered complementary. Our findings may help 

explain how cognitive performance improves sharply during adolescence 

while GMV is reduced and how males and females show no differences in 

overall performance. An investment in the careful characterization of the 

relationship between brain histology and MR-derived measures is essential to 
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bridge neuroimaging with neurobiology. They may be treated as separate 

fields, but of course remain two highly complementary methods of studying 

the same organ system. We focused on gray matter measures but the same 

applies to all MR modalities. 

ACCURATE & INTERPRETABLE: MACHINE LEARNING FOR BASIC 

RESEARCH AND PRECISION MEDICINE 

In Chapter 3, we showed that structural measures can predict cognitive 

performance even in relatively small sample sizes and discussed the 

importance of multivariate predictive modeling over traditional mass-

univariate hypothesis testing. However, larger sample sizes are necessary to 

build accurate and reliable models. In Chapter 4, we introduced an R package 

to make using and comparing different supervised and unsupervised learning 

algorithms faster and easier.  

Other than limits to researchers’ technical expertise, the second and 

fundamental reason why advanced analytic methods are not yet widely 

employed in biomedical research or clinical applications is reduced 

interpretability. Current state-of-the-art machine learning and deep learning 

approaches are highly successful in an array of specialized applications and 

advancing at a relatively fast pace. One of their main weaknesses remains 

their lack of transparency. “Black box” methods may offer good predictions, 

at best, but do not help us understand how and why the algorithm is making 

its decisions. This limits the insights we can gain into the question at hand, 
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and, more importantly, prevents human supervision of the process which is 

ultimately prone to catastrophic failure (Caruana R. et al., 2015). On the one 

hand, this limits the utility of machine learning methods in basic scientific 

discovery. On the other, legal, moral, and practical constraints prohibit their 

use in clinical practice. Unlike other applications of machine learning, there is 

minimal room for failure, or trial-and-error when human lives are involved. 

The development of interpretable machine learning methods will give 

researchers deeper insights into their data. More importantly, they will allow 

physicians to check and correct, as necessary, the learning algorithm’s rules. 

Such technologies will be transformational for biomedical research, and usher 

in the era of precision medicine. 

SHARING & CARING: THE NEED FOR TEAM SCIENCE 

Brain research requires vast resources in terms of funding, personnel, 

infrastructure, and time. There are clearly limits to what can be achieved by a 

single investigator or lab. However, real progress can be achieved by 

collaborations among labs, institutions, and industries. The importance of 

team science in biomedical research is well understood (Hall et al., 2008). Its 

adoption may be hindered by the established tradition of competition for 

funding and recognition, but it is hopefully only a matter of time before it is 

embraced widely. Partnerships among universities, health systems, private 

and industrial Research and Development units are growing stronger and will 
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eventually be the norm. Some of the factors that will drive the success of such 

collaborations include: 

• Homogenization of data collection protocols 

• Public sharing of basic research data 

• Standardization of evidence-based, free, and open source software 

• Publication of data and code along with each research article 

• Open review process 

• Systematic replication of research findings 

Neuroscience, Neurology and Psychiatry are set to benefit greatly from 

large-scale collaborative work. Many challenges remain to be addressed 

before effective treatments can be created, but team science is our best bet to 

get there. 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Alias Description

CUR CUR Matrix Approximation

H2OAE H2O Autoencoder

H2OGLRM H2O Generalized Low-Rank Model

ICA Independent Component Analysis

ISOMAP ISOMAP

KPCA Kernel Principal Component Analysis

LLE Locally Linear Embedding

NLCR Non-Linear Cluster Reduce

NMF Non-negative Matrix Factorization

PCA Principal Component Analysis

SPCA Sparse Principal Component Analysis

SVD Singular Value Decomposition

TSNE t-distributed Stochastic Neighbor Embedding

Alias Description

CMEANS Fuzzy C-means Clustering

HARDCL Hard Competitive Learning

HOPACH Hierarchical Ordered Partitioning And Collapsing Hybrid

H2OKMEANS H2O K-Means Clustering

KMEANS K-Means Clustering

NGAS Neural Gas Clustering

PAM Partitioning Around Medoids

PAMK Partitioning Around Medoids with k estimation

SPEC Spectral Clustering

Table A.1 Clustering algorithms

Table A.2 Decomposition algorithms
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Alias Description Class Reg Surv

ADABOOST Adaptive Boosting T F F
BART Bayesian Additive Regression Trees T T F

BRUTO BRUTO Additive Model F T F
CART Classification and Regression Trees T T T

CFOREST Conditional Random Forest T T T
CTREE Conditional Inference Trees T T T

C50 C5.0 Decision Tree T F F
ET Extra Trees T T F

EVTREE Evolutionary Learning of Globally Optimal Trees T T F
GAM Generalized Additive Model T T F
GBM Gradient Boosting Machine T T T
GLM Generalized Linear Model T T F

GLMNET Elastic Net T T T
GLS Generalized Least Squares F T F

H2ODL H2O Deep Learning T T F
H2OGBM H2O Gradient Boosting Machine T T F

H2ORF H2O Random Forest T T F
KNN k-Nearest Neighbor T T F
LDA Linear Discriminant Analysis T F F

LIGHTGBM
M

Light Gradient Boosting Machine T T F
LM Ordinary Least Squares Regression F T F

LOESS Local Polynomial Regression F T F
LOGISTIC Logistic Regression T F F

MARS Multivariate Adaptive Regression Splines T T F
MLGBM Spark MLlib Gradient Boosting T T F
MLMLP Spark MLlib Multilayer Perceptron T F F

MLRF Spark MLlib Random Forest T T F
MULTINOM Multinomial Logistic Regression T F F

MXFFN MXNET Feed Forward Neural Network T T F
NBAYES Naive Bayes T F F

NW Nadaraya-Watson Kernel Regression F T F
POLY Polynomial Regression F T F

POLYMARS Multivariate Adaptive Polynomial Spline 
Regression

T T F
PPR Projection Pursuit Regression F T F

PPTREE Projection Pursuit Trees T F F
QRNN Quantile Neural Network Regression F T F

RF Random Forest T T F
RFSRC Random Forest (Survival, Regression, 

Classification)
T T T

RLM Robust Linear Model F T F
SPLS Sparse Partial Least Squares F T F
SVM Support Vector Machine T T F
TLS Total Least Squares F T F
XGB Extreme Gradient Boosting T T F

XGBLIN Extreme Gradient Boosting of Linear Models F T F

Table A.3 Supervised learning algorithms

Class: Classification Reg: Regression Surv: Survival regression
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Alias Description

CCA Sparse Canonical Correlation Analysis

SD2RES ANTsR sparse decomposition

SD2RESDEF ANTsR sparse decomposition by deflation

Table A.4 Cross-decomposition algorithms

Alias Description

kfold Stratified k-fold cross-validation

strat.sub Stratified subsampling

bootstrap Bootstrap (sampling with replacement)

strat.boot Stratified bootstrap

Table A.5 Resampling methods
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