25 research outputs found

    Integrating Next-Generation Sequencing in the Clinical Pharmacogenomics Workflow

    Get PDF
    Pharmacogenomics has been recognized as a fundamental tool in the era of personalized medicine with up to 266 drug labels, approved by major regulatory bodies, currently containing pharmacogenomics information. Next-generation sequencing analysis assumes a critical role in personalized medicine, providing a comprehensive profile of an individual’s variome, particularly that of clinical relevance, comprising of pathogenic variants and pharmacogenomic biomarkers. Here, we propose a strategy to integrate next-generation sequencing into the current clinical pharmacogenomics workflow from deep resequencing to pharmacogenomics consultation, according to the existing guidelines and recommendations

    The Exposure of Breast Cancer Cells to Fulvestrant and Tamoxifen Modulates Cell Migration Differently

    Get PDF
    There is no doubt that there are increased benefits of hormonal therapy to breast cancer patients; however, current evidence suggests that estrogen receptor (ER) blockage using antiestrogens is associated with a small induction of invasiveness in vitro. The mechanism by which epithelial tumor cells escape from the primary tumor and colonize to a distant site is not entirely understood. This study investigates the effect of two selective antagonists of the ER, Fulvestrant (Fulv) and Tamoxifen (Tam), on the invasive ability of breast cancer cells. We found that 17β-estradiol (E2) demonstrated a protective role regarding cell migration and invasion. Fulv did not alter this effect while Tam stimulated active cell migration according to an increase in Snail and a decrease in E-cadherin protein expression. Furthermore, both tested agents increased expression of matrix metalloproteinases (MMPs) and enhanced invasive potential of breast cancer cells. These changes were in line with focal adhesion kinase (FAK) rearrangement. Our data indicate that the anti-estrogens counteracted the protective role of E2 concerning migration and invasion since their effect was not limited to antiproliferative events. Although Fulv caused a less aggressive result compared to Tam, the benefits of hormonal therapy concerning invasion and metastasis yet remain to be investigated

    Lymphocutaneous nocardiosis in a kidney transplant patient successfully treated with tigecycline

    No full text
    Cutaneous nocardiosis is an infrequent infection which has been increasingly reported in immunocompromised patients. Although trimethoprim-sulfamethoxazole is considered to be the agent of choice for treatment of nocardiosis, newer antimicrobials such as tigecycline have been proven to be effective in vitro, as well. We report the first case of primary cutaneous nocardiosis in a renal transplant recipient having corresponded well to treatment with tigecycline

    Antiproliferative effect of exemestane in lung cancer cells

    No full text
    <p>Abstract</p> <p>Background</p> <p>Recent evidence suggests that estrogen signaling may be involved in the pathogenesis of non-small cell lung cancer (NSCLC). Aromatase is an enzyme complex that catalyses the final step in estrogen synthesis and is present in several tissues, including the lung. In the current study we investigated the activity of the aromatase inhibitor exemestane in human NSCLC cell lines H23 and A549.</p> <p>Results</p> <p>Aromatase expression was detected in both cell lines. H23 cells showed lower protein and mRNA levels of aromatase, compared to A549 cells. Exemestane decreased cell proliferation and increased apoptosis in both cell lines, 48 h after its application, with A549 exhibiting higher sensitivity than H23 cells. Aromatase protein and mRNA levels were not affected by exemestane in A549 cells, whereas an increase in both protein and mRNA levels was observed in H23 cells, 48 h after exemestane application. Moreover, an increase in cAMP levels was found in both cell lines, 15 min after the administration of exemestane. In addition, we studied the effect of exemestane on epidermal growth factor receptor (EGFR) localization and activation. Exemestane increased EGFR activation 15 min after its application in H23 cells. Furthermore, we demonstrated a translocation of EGFR from cell membrane, 24 h after the addition of exemestane in H23 cells. No changes in EGFR activation or localization were observed in A549 cells.</p> <p>Conclusion</p> <p>Our findings suggest an antiproliferative effect of exemestane on NSCLC cell lines. Exemestane may be more effective in cells with higher aromatase levels. Further studies are needed to assess the activity of exemestane in NSCLC.</p

    Antiproliferative effect of exemestane in lung cancer cells

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;: Recent evidence suggests that estrogen signaling may be involved in the pathogenesis of non-small cell lung cancer (NSCLC). Aromatase is an enzyme complex that catalyses the final step in estrogen synthesis and is present in several tissues, including the lung. In the current study we investigated the activity of the aromatase inhibitor exemestane in human NSCLC cell lines H23 and A549. &lt;b&gt;Results&lt;/b&gt;: Aromatase expression was detected in both cell lines. H23 cells showed lower protein and mRNA levels of aromatase, compared to A549 cells. Exemestane decreased cell proliferation and increased apoptosis in both cell lines, 48 h after its application, with A549 exhibiting higher sensitivity than H23 cells. Aromatase protein and mRNA levels were not affected by exemestane in A549 cells, whereas an increase in both protein and mRNA levels was observed in H23 cells, 48 h after exemestane application. Moreover, an increase in cAMP levels was found in both cell lines, 15 min after the administration of exemestane. In addition, we studied the effect of exemestane on epidermal growth factor receptor (EGFR) localization and activation. Exemestane increased EGFR activation 15 min after its application in H23 cells. Furthermore, we demonstrated a translocation of EGFR from cell membrane, 24 h after the addition of exemestane in H23 cells. No changes in EGFR activation or localization were observed in A549 cells. &lt;b&gt;Conclusion&lt;/b&gt;: Our findings suggest an antiproliferative effect of exemestane on NSCLC cell lines. Exemestane may be more effective in cells with higher aromatase levels. Further studies are needed to assess the activity of exemestane in NSCLC

    Characterization and Biological Evaluation of Propolis from Poland

    No full text
    In this study, we assessed the therapeutic potential of propolis from Poland and performed chemical analysis by GC–MS, as well as determined its botanical origin. Chemical constituents typical for bud exudates of Populus nigra (section Aigeiros) were determined, however, glycerol esters of phenolic acids, as well as unusually high amounts of p-coumaric and ferulic acid and their benzyl esters, were also detected. These constituents are characteristic for buds of Populus tremula (section Leuce). We also evaluated the antiproliferative effect of propolis extracts against nine human cancer cell lines. Additionally, promising antibacterial activity of the dichloromethane extract (Minimal Inhibitory Concentration MIC values of 0.95–1.24 mg/mL), as well as a moderate antifungal activity (MIC values of 1.25–1.40 mg/mL), was noticed. Propolis from Poland appeared as a rich source of antibacterial and antiproliferative compounds and this confirmed that it is a valuable natural product with the potential to improve human health
    corecore