2,511 research outputs found

    The Four-Boson System with Short-Range Interactions

    Get PDF
    We consider the non-relativistic four-boson system with short-range forces and large scattering length in an effective quantum mechanics approach. We construct the effective interaction potential at leading order in the large scattering length and compute the four-body binding energies using the Yakubovsky equations. Cutoff independence of the four-body binding energies does not require the introduction of a four-body force. This suggests that two- and three-body interactions are sufficient to renormalize the four-body system. We apply the equations to 4He atoms and calculate the binding energy of the 4He tetramer. We observe a correlation between the trimer and tetramer binding energies similar to the Tjon line in nuclear physics. Over the range of binding energies relevant to 4He atoms, the correlation is approximately linear.Comment: 23 pages, revtex4, 5 PS figures, discussion expanded, results unchange

    Rare decay pi0 -> e+e-: theory confronts KTeV data

    Full text link
    Within the dispersive approach to the amplitude of the rare decay pi0 -> e+e- the nontrivial dynamics is contained only in the subtraction constant. We express this constant, in the leading order in (m_e/\Lambda)^2 perturbative series, in terms of the inverse moment of the pion transition form factor given in symmetric kinematics. By using the CELLO and CLEO data on the pion transition form factor given in asymmetric kinematics the lower bound on the decay branching ratio is found. The restrictions following from QCD allow us to make a quantitative prediction for the branching B(pi0 -> e+e-) =(6.2\pm 0.1)*10^{-8} which is 3\sigma below the recent KTeV measurement. We confirm our prediction by using the quark models and phenomenological approaches based on the vector meson dominance. The decays \eta -> l^+l^- are also discussed.Comment: 7 pages, 1 figur

    The structure of the atomic helium trimers: Halos and Efimov states

    Get PDF
    The Faddeev equations for the atomic helium-trimer systems are solved numerically with high accuracy both for the most sophisticated realistic potentials available and for simple phenomenological potentials. An efficient numerical procedure is described. The large-distance asymptotic behavior, crucial for weakly bound three-body systems, is described almost analytically for arbitrary potentials. The Efimov effect is especially considered. The geometric structures of the bound states are quantitatively investigated. The accuracy of the schematic models and previous computations is comparable, i.e. within 20% for the spatially extended states and within 40% for the smaller ^4He-trimer ground state.Comment: 32 pages containing 7 figures and 6 table

    Collective Excitations of Strongly Interacting Fermi Gases of Atoms in a Harmonic Trap

    Get PDF
    The zero-temperature properties of a dilute two-component Fermi gas in the BCS-BEC crossover are investigated. On the basis of a generalization of the Hylleraas-Undheim method, we construct rigorous upper bounds to the collective frequencies for the radial and the axial breathing mode of the Fermi gas under harmonic confinement in the framework of the hydrodynamic theory. The bounds are compared to experimental data for trapped vapors of Li6 atoms.Comment: 11 pages, 2 figure

    Effective Field Theory Program for Conformal Quantum Anomalies

    Full text link
    The emergence of conformal states is established for any problem involving a domain of scales where the long-range, SO(2,1) conformally invariant interaction is applicable. Whenever a clear-cut separation of ultraviolet and infrared cutoffs is in place, this renormalization mechanism produces binding in the strong-coupling regime. A realization of this phenomenon, in the form of dipole-bound anions, is discussed.Comment: 15 pages. Expanded, with additional calculational details. To be published in Phys. Rev.

    Limiting Case of Modified Electroweak Model for Contracted Gauge Group

    Full text link
    The modification of the Electroweak Model with 3-dimensional spherical geometry in the matter fields space is suggested. The Lagrangian of this model is given by the sum of the {\it free} (without any potential term) matter fields Lagrangian and the standard gauge fields Lagrangian. The vector boson masses are generated by transformation of this Lagrangian from Cartesian coordinates to a coordinates on the sphere S3S_3. The limiting case of the bosonic part of the modified model, which corresponds to the contracted gauge group SU(2;j)×U(1)SU(2;j)\times U(1) is discussed. Within framework of the limit model Z-boson and electromagnetic fields can be regarded as an external ones with respect to W-bosons fields in the sence that W-boson fields do not effect on these external fields. The masses of all particles of the Electroweak Model remain the same, but field interactions in contracted model are more simple as compared with the standard Electroweak Model.Comment: 12 pages, talk given at the XIII Int. Conf. on SYMMETRY METHODS IN PHYSICS, Dubna, Russia, July 6-9, 2009; added references for introduction, clarified motivatio

    Higgsless Electroweak Model and Contraction of Gauge Group

    Full text link
    A modified formulation of the Electroweak Model with 3-dimensional spherical geometry in the target space is suggested. The {\it free} Lagrangian in the spherical field space along with the standard gauge field Lagrangian form the full Higgsless Lagrangian of the model, whose second order terms reproduce the same experimentally verified fields with the same masses as the Standard Electroweak Model. The vector bosons masses are automatically generated, so there is no need in special mechanism of spontaneous symmetry breaking. The limiting case of the modified Higgsless Electroweak Model, which corresponds to the contracted gauge group SU(2;j)×U(1)SU(2;j)\times U(1) is discussed. Within framework of the limit model Z-boson, electromagnetic and electron fields are interpreted as an external ones with respect to W-bosons and neutrino fields. The W-bosons and neutrino fields do not effect on these external fields. The masses of all particles remain the same, but the field interactions in contracted model are more simple as compared with the standard Electroweak Model due to nullification of some terms.Comment: Talk at the International Workshop "`Supersymmetries and Quantum Symmetries"' (SQS-09), Dubna, Russia, July 29 -- August 3, 2009, 11

    A non-perturbative method of calculation of Green functions

    Full text link
    A new method for non-perturbative calculation of Green functions in quantum mechanics and quantum field theory is proposed. The method is based on an approximation of Schwinger-Dyson equation for the generating functional by exactly soluble equation in functional derivatives. Equations of the leading approximation and the first step are solved for Ï•d4\phi^4_d-model. At d=1d=1 (anharmonic oscillator) the ground state energy is calculated. The renormalization program is performed for the field theory at d=2,3d=2,3. At d=4d=4 the renormalization of the coupling involves a trivialization of the theory.Comment: 13 pages, Plain LaTex, no figures, some discussion of results for anharmonic oscillator and a number of references are added, final version published in Journal of Physics

    Universality in the Three-Body Problem for 4He Atoms

    Full text link
    The two-body scattering length a for 4He atoms is much larger than their effective range r_s. As a consequence, low-energy few-body observables have universal characteristics that are independent of the interaction potential. Universality implies that, up to corrections suppressed by r_s/a, all low-energy three-body observables are determined by a and a three-body parameter \Lambda_*. We give simple expressions in terms of a and \Lambda_* for the trimer binding energy equation, the atom-dimer scattering phase shifts, and the rate for three-body recombination at threshold. We determine \Lambda_* for several 4He potentials from the calculated binding energy of the excited state of the trimer and use it to obtain the universality predictions for the other low-energy observables. We also use the calculated values for one potential to estimate the effective range corrections for the other potentials.Comment: 23 pages, revtex4, 6 ps figures, references added, universal expressions update

    Strong and radiative decays of the Ds0*(2317) meson in the DK-molecule picture

    Full text link
    We consider a possible interpretation of the new charm-strange meson Ds0*(2317) as a hadronic molecule - a bound state of D and K mesons. Using an effective Lagrangian approach we calculate the strong Ds0* to Ds pi0 and radiative Ds0* to Ds* gamma decays. A new impact related to the DK molecular structure of the Ds0*(2317) meson is that the presence of u(d) quarks in the D and K mesons gives rise to a direct strong isospin-violating transition Ds0* to Ds pi0 in addition to the decay mechanism induced by eta-pi0 mixing considered previously. We show that the direct transition dominates over the eta-pi0 mixing transition in the Ds0* to Ds pi0 decay. Our results for the partial decay widths are consistent with previous calculations.Comment: 22 pages, 4 figures, accepted for publication in Phys. Rev.
    • …
    corecore