Within the dispersive approach to the amplitude of the rare decay pi0 -> e+e-
the nontrivial dynamics is contained only in the subtraction constant. We
express this constant, in the leading order in (m_e/\Lambda)^2 perturbative
series, in terms of the inverse moment of the pion transition form factor given
in symmetric kinematics. By using the CELLO and CLEO data on the pion
transition form factor given in asymmetric kinematics the lower bound on the
decay branching ratio is found. The restrictions following from QCD allow us to
make a quantitative prediction for the branching B(pi0 -> e+e-) =(6.2\pm
0.1)*10^{-8} which is 3\sigma below the recent KTeV measurement. We confirm our
prediction by using the quark models and phenomenological approaches based on
the vector meson dominance. The decays \eta -> l^+l^- are also discussed.Comment: 7 pages, 1 figur