472 research outputs found
Importance of tetrahedral coordination for high-valent transition metal oxides: YCrO as a model system
We have investigated the electronic structure of the high oxidation state
material YCrO within the framework of the Zaanen-Sawatzky-Allen phase
diagram. While Cr-based compounds like SrCrO/CaCrO and CrO
can be classified as small-gap or metallic negative-charge-transfer systems, we
find using photoelectron spectroscopy that YCrO is a robust insulator
despite the fact that its Cr ions have an even higher formal valence state of
5+. We reveal using band structure calculations that the tetrahedral
coordination of the Cr ions in YCrO plays a decisive role, namely to
diminish the bonding of the Cr states with the top of the O valence
band. This finding not only explains why the charge-transfer energy remains
effectively positive and the material stable, but also opens up a new route to
create doped carriers with symmetries different from those of other
transition-metal ions.Comment: 6 pages, 6 figure
Possibility to realize spin-orbit-induced correlated physics in iridium fluorides
Recent theoretical predictions of "unprecedented proximity" of the electronic
ground state of iridium fluorides to the SU(2) symmetric
limit, relevant for superconductivity in iridates, motivated us to investigate
their crystal and electronic structure. To this aim, we performed
high-resolution x-ray powder diffraction, Ir L-edge resonant inelastic
x-ray scattering, and quantum chemical calculations on Rb[IrF] and
other iridium fluorides. Our results are consistent with the Mott insulating
scenario predicted by Birol and Haule [Phys. Rev. Lett. 114, 096403 (2015)],
but we observe a sizable deviation of the state from the
SU(2) symmetric limit. Interactions beyond the first coordination shell of
iridium are negligible, hence the iridium fluorides do not show any magnetic
ordering down to at least 20 K. A larger spin-orbit coupling in iridium
fluorides compared to oxides is ascribed to a reduction of the degree of
covalency, with consequences on the possibility to realize spin-orbit-induced
strongly correlated physics in iridium fluorides
Extreme plasma states in laser-governed vacuum breakdown
Triggering vacuum breakdown at the upcoming laser facilities can provide
rapid electron-positron pair production for studies in laboratory astrophysics
and fundamental physics. However, the density of the emerging plasma should
seemingly stop rising at the relativistic critical density, when the plasma
becomes opaque. Here we identify the opportunity of breaking this limit using
optimal beam configuration of petawatt-class lasers. Tightly focused laser
fields allow plasma generation in a small focal volume much less than
, and creating extreme plasma states in terms of density and
produced currents. These states can be regarded as a new object of nonlinear
plasma physics. Using 3D QED-PIC simulations we demonstrate the possibility of
reaching densities of more than cm, which is an order of
magnitude higher than previously expected. Controlling the process via the
initial target parameters gives the opportunity to reach the discovered plasma
states at the upcoming laser facilities
Tien-Shan effect and charmed particles
It is shown that the Tien-Shan effect can be explained as a consequence of charmed particle production with a sufficiently high production cross-section (about 5 mb/nucleon at 100 TeV)
- …