3 research outputs found

    Fine mapping of a major QTL for awn length in barley using a multiparent mapping population

    No full text
    Awn length was mapped using a multiparent population derived from cv. Morex and four wild accessions. One QTL was fine mapped and candidate genes were identified in NILs by RNA-seq. Barley awns are photosynthetically active and contribute to grain yield. Awn length is variable among both wild and cultivated barley genotypes and many mutants with alterations in awn length have been identified. Here, we used a multiparent mapping population derived from cv. Morex and four genetically diverse wild barley lines to detect quantitative trait loci (QTLs) for awn length. Twelve QTLs, distributed over the barley genome, were identified with the most significant one located on chromosome arm 7HL (QTL AL7.1). The effect of AL7.1 was confirmed using near isogenic lines (NILs) and fine-mapped in two independent heterogeneous inbred families to a < 0.9 cM interval. With exception of a small effect on grain width, no other traits such as plant height or flowering time were affected by AL7.1. Variant calling on transcripts obtained from RNA sequencing reads in NILs was used to narrow down the list of candidate genes located in the interval. This data may be used for further characterization and unravelling of the mechanisms underlying natural variation in awn length

    A chromosome scale tomato genome built from complementary PacBio and Nanopore sequences alone reveals extensive linkage drag during breeding

    Get PDF
    The assembly and scaffolding of plant crop genomes facilitate the characterization of genetically diverse cultivated and wild germplasm. The cultivated tomato (Solanum lycopersicum) has been improved through the introgression of genetic material from related wild species, including resistance to pandemic strains of tobacco mosaic virus (TMV) from Solanum peruvianum. Here we applied PacBio HiFi and ONT Nanopore sequencing to develop independent, highly contiguous and complementary assemblies of an inbred TMV-resistant tomato variety. We show specific examples of how HiFi and ONT datasets can complement one another to improve assembly contiguity. We merged the HiFi and ONT assemblies to generate a long-read-only assembly where all 12 chromosomes were represented as 12 contiguous sequences (N50 = 68.5 Mbp). This chromosome scale assembly did not require scaffolding using an orthogonal data type. The merged assembly was validated by chromosome conformation capture data and is highly consistent with previous tomato genome assemblies that made use of genetic maps and Hi-C for scaffolding. Our long-read-only assembly reveals that a complex series of structural variants linked to the TMV resistance gene likely contributed to linkage drag of a 64.1-Mbp region of the S. peruvianum genome during tomato breeding. Through marker studies and ONT-based comprehensive haplotyping we show that this minimal introgression region is present in six cultivated tomato hybrid varieties developed in three commercial breeding programs. Our results suggest that complementary long read technologies can facilitate the rapid generation of near-complete genome sequences
    corecore