17 research outputs found

    RcnB Is a Periplasmic Protein Essential for Maintaining Intracellular Ni and Co Concentrations in Escherichia coli

    Get PDF
    International audienceNickel and cobalt are both essential trace elements that are toxic when present in excess. The main resistance mechanism that bacteria use to overcome this toxicity is the efflux of these cations out of the cytoplasm. RND (resistance-nodulation-cell division)- and MFS (major facilitator superfamily)-type efflux systems are known to export either nickel or cobalt. The RcnA efflux pump, which belongs to a unique family, is responsible for the detoxification of Ni and Co in Escherichia coli. In this work, the role of the gene yohN, which is located downstream of rcnA, is investigated. yohN is cotranscribed with rcnA, and its expression is induced by Ni and Co. Surprisingly, in contrast to the effect of deleting rcnA, deletion of yohN conferred enhanced resistance to Ni and Co in E. coli, accompanied by decreased metal accumulation. We show that YohN is localized to the periplasm and does not bind Ni or Co ions directly. Physiological and genetic experiments demonstrate that YohN is not involved in Ni import. YohN is conserved among proteobacteria and belongs to a new family of proteins; consequently, yohN has been renamed rcnB. We show that the enhanced resistance of rcnB mutants to Ni and Co and their decreased Ni and Co intracellular accumulation are linked to the greater efflux of these ions in the absence of rcnB. Taken together, these results suggest that RcnB is required to maintain metal ion homeostasis, in conjunction with the efflux pump RcnA, presumably by modulating RcnA-mediated export of Ni and Co to avoid excess efflux of Ni and Co ions via an unknown novel mechanism

    Identification of rcnA (yohM), a Nickel and Cobalt Resistance Gene in Escherichia coli

    No full text
    We report here on the isolation and primary characterization of the yohM gene of Escherichia coli. We show that yohM encodes a membrane-bound polypeptide conferring increased nickel and cobalt resistance in E. coli. yohM was specifically induced by nickel or cobalt but not by cadmium, zinc, or copper. Mutation of yohM increased the accumulation of nickel inside the cell, whereas cells harboring yohM in multicopy displayed reduced intracellular nickel content. Our data support the hypothesis that YohM is the first described efflux system for nickel and cobalt in E. coli. We propose rcnA (resistance to cobalt and nickel) as the new denomination of yohM

    Original sequence divergence among Pseudomonas putida CadRs drive specificity

    No full text
    International audienceBacteria, especially those living in soils, are in constant contact with metals. Transition metals like Fe or Zn, are required for proper growth. Some other metals like Cd or Hg are only toxic. Several systems exist to detoxify cells when these metals are present in concentrations harmful to biological systems. The expression of these systems is under control of specialized regulatory proteins able to detect metals and to regulate cognate detoxifying systems. In this work we report on the characterisation of the metallo-regulator CadR from P. putida KT2440. By using gene reporter assays, we investigated the repertoire of metals detected by CadR. We show that CadR is much more responsive to Hg than to Cd, as compared to CadR from P. putida 06909. CadR from P. putida KT2440 differs in only 3 amino-acids in its metal-binding domain with respect to CadR from P. putida 06909. We show that these residues are important determinants of metal selectivity by engineering a modified CadR

    Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium.

    No full text
    International audiencePlant pathogenic bacteria of the genera Dickeya and Pectobacterium are broad-host-range necrotrophs which cause soft-rot diseases in important crops. A metabolomic analysis, based on (13) C-NMR spectroscopy, was used to characterize the plant-bacteria interaction. Metabolic profiles revealed a decline in plant sugars and amino acids during infection and the concomitant appearance of a compound identified as 2,3-butanediol. Butanediol is the major metabolite found in macerated tissues of various host plants. It is accumulated during the symptomatic phase of the disease. Different species of Dickeya or Pectobacterium secrete high levels of butanediol during plant infection. Butanediol has been described as a signalling molecule involved in plant/bacterium interactions and, notably, able to induce plant systemic resistance. The bud genes, involved in butanediol production, are conserved in the phytopathogenic enterobacteria of the genera Dickeya, Pectobacterium, Erwinia, Pantoea and Brenneria. Inactivation of the bud genes of Dickeya dadantii revealed that the virulence of budA, budB and budR mutants was clearly reduced. The genes budA, budB and budC are highly expressed during plant infection. These data highlight the importance of butanediol metabolism in limiting acidification of the plant tissue during the development of the soft-rot disease caused by pectinolytic enterobacteria

    Systematic targeted mutagenesis of the MarR/SlyA family members of Dickeya dadantii 3937 reveals a role for MfbR in the modulation of virulence gene expression in response to acidic pH

    No full text
    International audiencePathogenicity of Dickeya dadantii is a process involving several factors, such as plant cell wall-degrading enzymes and adaptation systems to adverse conditions encountered in the apoplast. Regulators of the MarR family control a variety of biological processes, including adaptation to hostile environments and virulence. Analysis of the members of this family in D. dadantii led to the identification of a new regulator, MfbR, which controls virulence. MfbR represses its own expression but activates genes encoding plant cell wall-degrading enzymes. Purified MfbR increases the binding of RNA polymerase at the virulence gene promoters and inhibits transcription initiation at the mfbR promoter. MfbR activity appeared to be modulated by acidic pH, a stress encountered by pathogens during the early stages of infection. Expression of mfbR and its targets, during infection, showed that MfbR is unable to activate virulence genes in acidic conditions at an early step of infection. In contrast, alkalinization of the apoplast, during an advanced stage of infection, led to the potentialization of MfbR activity resulting in plant cell wall degrading enzyme production. This report presents a new example of how pathogens adjust virulence-associated factors during the time-course of an infection

    The nucleoid-associated protein Fis directly modulates the synthesis of cellulose, an essential component of pellicle-biofilms in the phytopathogenic bacterium Dickeya dadantii.

    No full text
    International audienceBacteria use biofilm structures to colonize surfaces and to survive in hostile conditions, and numerous bacteria produce cellulose as a biofilm matrix polymer. Hence, expression of the bcs operon, responsible for cellulose biosynthesis, must be finely regulated in order to allow bacteria to adopt the proper surface-associated behaviours. Here we show that in the phytopathogenic bacterium, Dickeya dadantii, production of cellulose is required for pellicle-biofilm formation and resistance to chlorine treatments. Expression of the bcs operon is growth phase-regulated and is stimulated in biofilms. Furthermore, we unexpectedly found that the nucleoid-associated protein and global regulator of virulence functions, Fis, directly represses bcs operon expression by interacting with an operator that is absent from the bcs operon of animal pathogenic bacteria and the plant pathogenic bacterium Pectobacterium. Moreover, production of cellulose enhances plant surface colonization by D. dadantii. Overall, these data suggest that cellulose production and biofilm formation may be important factors for surface colonization by D. dadantii and its subsequent survival in hostile environments. This report also presents a new example of how bacteria can modulate the action of a global regulator to co-ordinate basic metabolism, virulence and modifications of lifestyle

    New Cyt-like δ-endotoxins from Dickeya dadantii: structure and aphicidal activity.

    No full text
    International audienceIn the track of new biopesticides, four genes namely cytA, cytB, cytC and cytD encoding proteins homologous to Bacillus thuringiensis (Bt) Cyt toxins have been identified in the plant pathogenic bacteria Dickeya dadantii genome. Here we show that three Cyt-like d-endotoxins from D. dadantii (CytA, CytB and CytC) are toxic to the pathogen of the pea aphid Acyrthosiphon pisum in terms of both mortality and growth rate. The phylogenetic analysis of the comprehensive set of Cyt toxins available in genomic databases shows that the whole family is of limited taxonomic occurrence, though in quite diverse microbial taxa. From a structure-function perspective the 3D structure of CytC and its backbone dynamics in solution have been determined by NMR. CytC adopts a cytolysin fold, structurally classified as a Cyt2-like protein. Moreover, the identification of a putative lipid binding pocket in CytC structure, which has been probably maintained in most members of the Cyt-toxin family, could support the importance of this lipid binding cavity for the mechanism of action of the whole family. This integrative approach provided significant insights into the evolutionary and functional history of D. dadantii Cyt toxins, which appears to be interesting leads for biopesticides. W eeds, pathogens and animal pests are potentially responsible for huge economic losses in agricultural production, and about 20% of these losses are due to animal pests 1. Among insects, aphids (Hemiptera: Aphidoidea) are one of the most injuring taxa for agricultural plants. They are difficult to control due to their specialized feeding mechanism and unusual reproductive biology 2,3. As a result, the management of aphid populations is quite challenging. Until now, most aphid pest control strategies rely on the use of specific sets of systemic chemical pesticides. But the extensive use of these pesticides had led to resistance to insecticides in several aphid species 4,5 , and cause significant environmental damage by targeting different guilds of beneficial insects (predators, parasitoids, and pollinators) 6,7. Therefore, it is highly desirable to develop biopesticides with low non-target effects. A substitute to current chemical pesticides is plant bioengineering; in order to be more selective to target pests, plants can be genetically modified to express insecticidal biomolecules within specific tissues 8. Nevertheless, as happened with conventional pesticides, plant bioengineering has also led to some field insect resistance 9. Hence, crops with more than one defensive protein, each with a different mechanism of action, have been proposed to delay insect resistance (gene pyramiding). However, very few genetically modified plants have yet been developed with resistance to sap-sucking insects, and none is used commercially 10–12. Therefore it seems essential to further develop suitable biopesticides, which could turn into candidate genes for the development of aphid-tolerant plants. In the track of such biopesticides, bacterial toxins did provide paradigmatic solutions, such as the crystal toxins encoded in plasmids of the soil bacterium Bacillus thuringiensis (Bt), which provided a vast diversity of Cry-like toxins for plant protection. Recently however, Bt-related toxins were found in genomes outside its original Gram1 bacterium: four genes namely cytA, cytB, cytC and cytD, encoding proteins homologous to Bacillus thuringiensis (Bt) Cyt toxins have been identified in the Dickeya dadantii (formerly Erwinia chrysanthemi) genome 1

    Dissimilar gene repertoires of Dickeya solani involved in the colonization of lesions and roots of Solanum tuberosum

    Get PDF
    Dickeya and Pectobacterium species are necrotrophic pathogens that macerate stems (blackleg disease) and tubers (soft rot disease) of Solanum tuberosum. They proliferate by exploiting plant cell remains. They also colonize roots, even if no symptoms are observed. The genes involved in pre-symptomatic root colonization are poorly understood. Here, transposon-sequencing (Tn-seq) analysis of Dickeya solani living in macerated tissues revealed 126 genes important for competitive colonization of tuber lesions and 207 for stem lesions, including 96 genes common to both conditions. Common genes included acr genes involved in the detoxification of plant defense phytoalexins and kduD, kduI, eda (=kdgA), gudD, garK, garL, and garR genes involved in the assimilation of pectin and galactarate. In root colonization, Tn-seq highlighted 83 genes, all different from those in stem and tuber lesion conditions. They encode the exploitation of organic and mineral nutrients (dpp, ddp, dctA, and pst) including glucuronate (kdgK and yeiQ) and synthesis of metabolites: cellulose (celY and bcs), aryl polyene (ape), and oocydin (ooc). We constructed in-frame deletion mutants of bcsA, ddpA, apeH, and pstA genes. All mutants were virulent in stem infection assays, but they were impaired in the competitive colonization of roots. In addition, the ΔpstA mutant was impaired in its capacity to colonize progeny tubers. Overall, this work distinguished two metabolic networks supporting either an oligotrophic lifestyle on roots or a copiotrophic lifestyle in lesions. This work revealed novel traits and pathways important for understanding how the D. solani pathogen efficiently survives on roots, persists in the environment, and colonizes progeny tubers

    Dynamic interplay between the periplasmic and transmembrane domains of GspL and GspM in the type II secretion system.

    Get PDF
    The type II secretion system (T2SS) is a multiprotein nanomachine that transports folded proteins across the outer membrane of gram-negative bacteria. The molecular mechanisms that govern the secretion process remain poorly understood. The inner membrane components GspC, GspL and GspM possess a single transmembrane segment (TMS) and a large periplasmic region and they are thought to form a platform of unknown function. Here, using two-hybrid and pull-down assays we performed a systematic mapping of the GspC/GspL/GspM interaction regions in the plant pathogen Dickeya dadantii. We found that the TMS of these components interact with each other, implying a complex interaction network within the inner membrane. We also showed that the periplasmic, ferredoxin-like, domains of GspL and GspM drive homo- and heterodimerizations of these proteins. Disulfide bonding analyses revealed that the respective domain interfaces include the equivalent secondary-structure elements, suggesting alternating interactions of the periplasmic domains, L/L and M/M versus L/M. Finally, we found that displacements of the periplasmic GspM domain mediate coordinated shifts or rotations of the cognate TMS. These data suggest a plausible mechanism for signal transmission between the periplasmic and the cytoplasmic portions of the T2SS machine
    corecore