39 research outputs found

    Association of limbic system-associated membrane protein (LSAMP) to male completed suicide-0

    No full text
    Default confidence interval algorithm, are indicated on the LD output. Marker pairs in complete LD are indicated by an empty box.<p><b>Copyright information:</b></p><p>Taken from "Association of limbic system-associated membrane protein (LSAMP) to male completed suicide"</p><p>http://www.biomedcentral.com/1471-2350/9/34</p><p>BMC Medical Genetics 2008;9():34-34.</p><p>Published online 23 Apr 2008</p><p>PMCID:PMC2386445.</p><p></p

    Table_5_Profiling of Amino Acids and Their Derivatives Biogenic Amines Before and After Antipsychotic Treatment in First-Episode Psychosis.DOCX

    No full text
    <p>Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N-methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.</p

    Table_3_Profiling of Amino Acids and Their Derivatives Biogenic Amines Before and After Antipsychotic Treatment in First-Episode Psychosis.DOCX

    No full text
    <p>Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N-methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.</p

    Table_1_Profiling of Amino Acids and Their Derivatives Biogenic Amines Before and After Antipsychotic Treatment in First-Episode Psychosis.DOCX

    No full text
    <p>Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N-methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.</p

    Table_8_Profiling of Amino Acids and Their Derivatives Biogenic Amines Before and After Antipsychotic Treatment in First-Episode Psychosis.DOCX

    No full text
    <p>Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N-methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.</p

    Table_4_Profiling of Amino Acids and Their Derivatives Biogenic Amines Before and After Antipsychotic Treatment in First-Episode Psychosis.DOCX

    No full text
    <p>Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N-methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.</p

    Table_6_Profiling of Amino Acids and Their Derivatives Biogenic Amines Before and After Antipsychotic Treatment in First-Episode Psychosis.DOCX

    No full text
    <p>Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N-methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.</p

    Table_2_Profiling of Amino Acids and Their Derivatives Biogenic Amines Before and After Antipsychotic Treatment in First-Episode Psychosis.DOCX

    No full text
    <p>Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N-methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.</p

    Table_9_Profiling of Amino Acids and Their Derivatives Biogenic Amines Before and After Antipsychotic Treatment in First-Episode Psychosis.DOCX

    No full text
    <p>Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N-methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.</p

    Melanocytes in the Skin – Comparative Whole Transcriptome Analysis of Main Skin Cell Types

    Get PDF
    <div><p>Melanocytes possess several functions besides a role in pigment synthesis, but detailed characteristics of the cells are still unclear. We used whole transcriptome sequencing (RNA-Seq) to assess differential gene expression of cultivated normal human melanocytes with respect to keratinocytes, fibroblasts and whole skin. The present results reveal cultivated melanocytes as highly proliferative cells with possible stem cell-like properties. The enhanced readiness to regenerate makes melanocytes the most vulnerable cells in the skin and explains their high risk of developing into malignant melanoma.</p></div
    corecore