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Abstract

Melanocytes possess several functions besides a role in pigment synthesis, but

detailed characteristics of the cells are still unclear. We used whole transcriptome

sequencing (RNA-Seq) to assess differential gene expression of cultivated normal

human melanocytes with respect to keratinocytes, fibroblasts and whole skin. The

present results reveal cultivated melanocytes as highly proliferative cells with

possible stem cell-like properties. The enhanced readiness to regenerate makes

melanocytes the most vulnerable cells in the skin and explains their high risk of

developing into malignant melanoma.

Introduction

Skin is a highly organized and differentiated structure, which consist of various

cell types. Keratinocytes (KC) and fibroblasts (FB) together form the majority of

cellular components in the skin (76105–96105 KC per mm2 [1] and 46103

mid-dermis FB to 105 papillary FB per mm3 [2, 3]). Therefore the functional

properties of the highly outnumbered melanocytes (MC) have received relatively

less attention. The average number of pigment-producing MC depends on the
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body site and is estimated to be between 500 to 2000 MC per mm2 [1, 4].

Interestingly, differences in ethnic background manifest in the intensity of

melanogenesis and the morphology of dendrites, but not in the quantity of MC

[5]. Despite their small number, MC have proven to have several roles besides

melanogenesis, a well-characterized property of MC. They are able to secrete a

wide range of signaling molecules, e.g. proinflammatory cytokines, immunosup-

pressive molecules, neuromediators etc. [2, 6–9]. MC interacts highly with

surrounding KC, which have been shown to regulate MC survival, dendricity,

melanogenesis, and the expression of cell surface receptors [10].

Numerous gene expression analyses of different skin cell populations have been

performed in both physiological and pathological states using an array of

detection techniques ranging from quantitative real time polymerase chain

reaction (qPCR) and in situ hybridization to high throughput methods such as

serial analysis of gene expression and microarrays [11–13]. However, all these

methods have specific limitations. In contrast, the use of high-throughput RNA-

Seq on rRNA-depleted samples allows the detection of nearly all coding and non-

coding RNA species in a given sample.

In the present study we outline, to our knowledge for the first time, the

differences of MC compared to other main cell types of the skin at the level of

complete transcriptome. We used whole skin samples and cultivated primary skin

cells, harvested from the same body site of healthy subjects of similar age.

Materials and Methods

Ethics Statement and Patients

All procedures were carried out in accordance with the ethical standards. This

study (including written consent form) has been approved by Research Ethics

Committee of the University of Tartu (approval number 178/T-19). The patients

with no concurrent diseases and signs of infection, were recruited from among

elective patients present at the Department of Pediatric Surgery, Tallinn

Children’s Hospital. A written informed consent was obtained from all parents or

caretakers of patients under 18 years. Additionally, separate written informed

consent was obtained from all patients aged 8–17 years. Nine pediatric foreskins

from healthy volunteers (aged 5 months to 10 year) were used. Collected tissue

samples were by-products of circumcise procedures and no additional interven-

tion was caused by our investigation. All samples were coded and information of

the donor identity was only available for the physician. All patient related

information was stored separately from the samples and the data.

Cell culture

From each tissue sample three skin cell types (keratinocytes, melanocytes and

fibroblasts) were harvested. After rinsing in phosphate-buffered saline (PBS w/o

Ca, mg, PAA Laboratories), subcutaneous fat was removed from skin pieces and
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tissues were incubated in dispase II (2.4 U/ml, Sigma-Aldrich) at +4 C̊ overnight.

Epidermis was peeled off from the dermis, transferred into 0.05% trypsin/0.02%

EDTA (Life Technologies) for 3 min at 37 C̊. Enzymatic digestion was stopped by

adding the trypsin inhibitor (Sigma-Aldrich). MC culture dishes were precoated

with gelatin before cell seeding. EpiLife basal medium with human keratinocyte

growth supplement (Life Technologies) and melanocyte growth medium M2 with

supplement mix (PromoCell) were used to cultivate corresponding cells.

A piece of dermis was used for isolation of FB by migration method as follows.

The dermis was cut into 464 mm pieces and attached onto a culture dish,

covered with 10 ml Dulbecco’s Modified of Eagle’s Medium (DMEM) (PAA

Laboratories) supplemented with10% foetal bovine serum (Sigma-Aldrich). The

medium was changed every 2nd day throughout the study. The skin cells were

cultivated at low passage number (2–3) to minimize the influence of culturing

conditions.

RNA Extraction and Library Preparation and Whole Transcriptome

Sequencing

Cultivated skin cells underwent to lysis and RNA extraction process using TrizolH
(Invitrogen) as described in [12]. The skin biopsies were homogenized using

PrecellysH 24 system and previously optimized protocol [12] were used for total

RNA extraction, followed by DNAse I (Qiagen) treatment. The purity and

concentration of samples was checked with both Qubit spectrophotometer and

Nano Drop ND-1000 and the integrity of the RNA (RIN) was evaluated using

Agilent 2100 Bioanalyzer. We chose 12 total RNA samples, with the highest RIN

(9–10), extracted from 4 KC, 4 MC, 2 FB and 2 whole skin samples for library

preparation. Extracted mRNA was enriched using RiboMinusTM Eukaryote kit

(Invitrogen) according to manufacturer’s instructions. The final quantity of RNA

was 10 mg per reaction. The cDNA library with size-selected in the range of 150–

250 bp and following bar-coding preparation procedure was based on a protocol

provided by Applied Biosystems. Samples were sequenced using SOLiD 5500xl

platform with 75 bp forward and 35 reverse primers.

Analysis of RNA-Seq data

Sequencing of cDNA libraries resulted in 24842284 to 44324428 paired reads per

sample. For greater mapping quality the initial 75 bp F3 and 35 bp F5 reads were

trimmed to 45 and 25 base pairs, respectively. All color-spaced reads were aligned

to human reference genome (Ensembl, release 73) using TopHat v2.1.0 [14] that

used Bowtie version 1.0.0 [15]. RPKM (reads per kilobase of transcript per million

mapped reads) values for gene expression levels were calculated with Cufflinks

v2.0.2 [16] and raw counts were retrieved with HTSeq version 0.5.3p9 (http://

www-huber.embl.de/users/anders/HTSeq/) using gene annotations of protein

coding genes downloaded from Ensembl (release 73). Differential expression was
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estimated on raw counts with edgeR [17]. All programs were used with their

default parameters with TopHat set to not to find novel junctions.

Modeling background regions

To estimate the number of truly expressed genes we modeled intergenic regions

using a methodology described in [18]. Models of intergenic regions are expected

to reflect the level of background expression (noise), which is taken as the baseline

when estimating the number of expressed genes. For each gene, the length of the

background region was equal to the gene’s longest combined transcript (the sum

of all transcribed nucleotides) and it extended upstream from position-1000

relative to the transcription start site. Only background regions that did not

overlap with any expressed sequence tags (EST) were used in the analysis. A gene

was considered as expressed only if the RPKM value in all samples of the

corresponding cell type was above the cutoff (0.95). Conversely, the gene was

labeled as not expressed if the RPKM value was below 0.95 in at least one of the

samples. EST annotations were downloaded using UCSC Table Browser (http://

genome.ucsc.edu/cgi-bin/hgTables).

Differential expression analysis of gene expression

Differential expression was estimated between MC and samples from KC, FB and

the whole skin using edgeR [17]. A gene was considered as differentially expressed

if the FDR-adjusted p-value was below 0.05 and if the gene was expressed in at

least one of the cell types.

To identify a gene as expressed only in MC and not in KC, FB (termed as

‘‘uniquely expressed in MC’’) it had to meet the following requirements: 1) RPKM

.0.95 in MC (gene is labeled as expressed in MC), 2) RPKM ,0.95 in KC, FB

(gene is labeled as not expressed in KC, FB), 3) differential expression FDR ,0.05

(gene is differentially expressed in MC with respect to KC and FB).

Pathway analysis of differentially expressed genes

Gene ontology enrichment analysis of differentially expressed genes was

performed using g:GOSt (http://biit.cs.ut.ee/gprofiler/index.cgi) [19]. Bases on the

p-values of g:GOSt analysis, GOsummaries package were used to generate

wordclouds of gene names (http://cran.r-project.org/web/packages/

GOsummaries/index.html). The word sizes in wordclouds are defined by the p-

values.

Additionally, multidimensional scaling test for visualizing the level of similarity

of individual samples in study groups were performed using edgeR. The results

confirm the homogenity and purity of cell populations (S1 Fig.).
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Results and Discussion

Overall differences between cultivated MC, KC, FB and whole skin

tissue

As expected, the total number of expressed genes was the highest in whole skin

samples (10,871 genes), since other cell types besides KC, MC and FB (epithelial

cells, Merkel cells, Langerhans cells etc.) are found in a skin biopsy (Table 1).

Interestingly, the total number of expressed genes was the lowest in KC (Table 1).

Thereat, 7766 genes were commonly expressed in all study groups (whole skin and

KC, MC and FB). The list of the detected genes and their RPKM values can be

found in the S1 Table. Similarly, the number of genes considered as uniquely

expressed was the largest in the whole skin sample (290 genes, Table 1). When

comparing specific cell populations, FB had a higher number of uniquely

expressed genes compared to MC and KC (277, 122, 138 uniquely expressed

genes, respectively) (Table 1). It is likely that the true number of uniquely

expressed genes is higher as we applied a relatively strict cutoff criterion (RPKM

.0.95) when calling gene expression as present or absent. The genes, uniquely

expressed in MC are displayed in Table 2.

Based on the differential gene expression analysis, we identified significantly

fewer similarities between MC and whole skin gene expression patterns than when

comparing KC or FB to the whole skin. In melanocytes, 6231 genes were

differentially expressed compared to the whole skin. Of those, 3680 were

upregulated in MC and 2551 downregulated in MC with respect to whole skin

samples (Fig. 1). The number of differentially expressed genes with respect to

whole skin was 4480 in KC and 4454 in FB. This finding can be explained by the

relatively small proportion of MC in the total cell number of skin. The entire list

of differentially expressed genes can be found in S2 Table.

Differential gene expression in MC

Previous studies have mainly pointed out the role of melanocytes as pigment-

producing cells in the skin. The gene expression profile of MC has been compared

to other normal skin cells but also to pathologic melanoma cells [11, 13]. We

confirmed the high expression level of previously identified melanocyte-specific

genes such as DCT, TYR, KIT, EDNRB, MITF, and TYRP1, in MC compared to

FB and KC (S2 Table), as reported also in a previous microarray study [11]. DCT,

TYR and TYRP1 encode enzymes acting in the melanin synthesis pathway [20].

EDNRB and MITF are crucial for melanoblast proliferation and KIT is needed for

the differentiation of melanoblasts into TYR-positive MC [21, 22]. We also

showed MC1R, PLA1A, NPM2 to be uniquely expressed in MC, but not in KC or

FB (Table 2) corroborating previously published data [23]. MC1R, a receptor for

melanocyte-stimulating hormones and adrenocorticotropic hormone, is involved

in regulating the pigmentation of the skin and hair. PLA1A and NPM2 have both

been shown to be essential in melanoma progression [24, 25]. In agreement with

previous studies [11, 13] the expression of ABCC2, DNAJA1, GPR143, MLANA,
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OCA2, QPCT, RRAGD, TBC1D7 and GPR137B was detected at a higher level in

MC compared to KC and FB (S2 Table). Majority of these genes are also related to

the melanogenesis pathway, controlling the growth and maturation of melano-

somes, being involved in melanosome biogenesis, transporting melanin precursor

molecules or being candidate genes in melanocytic tumor progression [26–30].

In the present study our goal was to detect other potential functions and key

genes of MC. Comparing MC, KC and FB, we found several gene groups, which

distinguish MC from other skin cells.

The most prominent group of genes differentially expressed in MC compared

to FB (Fig. 1) was that of encoding various histone proteins (HIST1H1A,

HIST1H1B, HIST1H2AA, HIST1H2AE, HIST1H2AG, HIST1H2AI, HIST1H2BB,

HIST1H2BH, HIST1H2BI, HIST1H2BN, HIST1H3D, HIST1H3F, HIST1H3H,

HIST1H3J, HIST1H4D, HIST1H4I, HIST1H4L, HIST2H3D, HIST3H2A,

HIST3H2BB and HIST4H4) (S2 Table). Another group of genes, the expression of

which drastically differed in MC compared to FB, were cell division cycle protein

genes (CDC20, CDC25A, CDC25C, CDC6, CDCA2, CDCA5, CDCA8) (S2 Table).

Additionally, a set of kinesin family genes (KIF13B, KIF20B, KIF21A, KIF22,

KIF24, KIF2C, KIFC1 was differentially expressed in MC compared to FB

(S2 Table). We saw also significantly higher expression of calcium-binding

proteins S100A1, S100A14, S100A8, S100A9 and S100B genes in MC compared to

FB (S2 Table).

Above mentioned gene groups, which are prominently expressed in MC but not

in FB suggest that MC are active and intensively proliferative in the culture

conditions. For instance, the high prevalence of histone genes in MC reveal to

intensified DNA synthesis as histones are responsible for nucleosome structure

and proper DNA wrapping [31]. This corresponds well with the high proliferative

activity we saw during the cell cultivation process. This conclusion is substantiated

by the increased expression of a number of cell cycle regulating genes, which are

involved in the regulation of cell cycle at several steps and levels and kinesin genes,

which are related to cell movements and intracellular trafficking, including

chromosome and centrosome positioning during mitosis [32]. Calcium-binding

proteins are responsible for numerous cellular processes, e.g. cell cycle regulation

and differentiation, but have also been suggested to have tumor suppressor

functions and are highly expressed in cells with stem cell properties [29, 33].

Compared to KC, MC expressed a set of major histocompatibility complex

protein genes such as HLA-B, HLA-DMA, HLA-DPB1, HLA-DRA and HLA-F

Table 1. The number of detected and uniquely expressed genes.

Skin Keratinocytes Melanocytes Fibroblasts

Total number of expressed genes

10871 8937 9903 10420

Uniquely expressed genes

290 138 122 277

doi:10.1371/journal.pone.0115717.t001
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Table 2. Uniquely expressed genes in MC.

Uniquely expressed genes in melanocytes

Symbol Gene Name Symbol Gene Name Symbol Gene Name Symbol Gene Name

ADCK1 aarF domain containing
kinase 1

EME1 essential meiotic
endonuclease 1
homolog 1 (S.
pombe)

LSM11 LSM11, U7 small nuclear
RNA associated

SCG2 secretogranin II

ADCY2 adenylate cyclase 2
(brain)

ENTHD1 ENTH domain con-
taining 1

LYPD1 LY6/PLAUR domain con-
taining 1

SEPT4 septin 4

ANKRD37 ankyrin repeat domain 37 EOMES eomesodermin LZTS1 leucine zipper, putative
tumor suppressor 1

SFMBT2 Scm-like with four
mbt domains 2

ANO5 anoctamin 5 EPHA5 EPH receptor A5 MC1R melanocortin 1 receptor SHC4 SHC family, mem-
ber 4

ARL9 ADP-ribosylation factor-
like 9

ESR2 estrogen receptor 2
(ER beta)

MCF2 MCF.2 cell line derived
transforming sequence

SHROOM4 shroom family
member 4

ASB9 ankyrin repeat and SOCS
box containing 9

EVI2A ecotropic viral inte-
gration site 2A

MCOLN2 mucolipin 2 SLAMF9 SLAM family
member 9

BAIAP2L2 BAI1-associated protein
2-like 2

EVI2B ecotropic viral inte-
gration site 2B

MDGA2 MAM-containing glycosyl-
phosphatidylinositol
anchor 2

SLC16A10 solute carrier
family 16, member
10

BCL2 B-cell CLL/lymphoma 2 FABP7 fatty acid binding
protein 7, brain

MGAT5B mannosyl-glucosaminyl-
transferase, isozyme B

SLC19A1 solute carrier
family 19 (folate
transporter),
member 1

BHLHE41 basic helix-loop-helix
family, member e41

FAM124A family with
sequence similarity
124A

MMP8 matrix metallopeptidase 8
(neutrophil collagenase)

SLC19A3 solute carrier
family 19, member
3

BMPR1B bone morphogenetic pro-
tein receptor, type IB

FAM69B family with
sequence similarity
69, member B

NPM2 nucleophosmin/nucleo-
plasmin 2

SLC22A18A-
S

solute carrier
family 22, member
18 antisense

BST2 bone marrow stromal cell
antigen 2

FAXC failed axon connec-
tions homolog
(Drosophila)

NR4A3 nuclear receptor subfamily
4, group A, member 3

SLITRK2 SLIT and NTRK-
like family, mem-
ber 2

C11ORF96 chromosome 11 open
reading frame 96

FCGR2A Fc fragment of IgG,
low affinity IIa,
receptor (CD32)

PAEP progestagen-associated
endometrial protein

SORBS1 sorbin and SH3
domain containing
1

C2ORF88 chromosome 2 open
reading frame 88

FOXD3 forkhead box D3 PDE3A phosphodiesterase 3A,
cGMP-inhibited

SSUH2 ssu-2 homolog (C.
elegans)

C8ORF46 chromosome 8 open
reading frame 46

FOXRED2 FAD-dependent oxi-
doreductase
domain containing 2

PDE7B phosphodiesterase 7B ST6GALNA-
C3

N-acetylgalactosa-
minide alpha-2,6-
sialyltransferase
3

CA8 carbonic anhydrase VIII FRMD5 FERM domain con-
taining 5

PDLIM3 PDZ and LIM domain 3 ST8SIA1 Alpha-N-Acetyl-
Neuraminide
Alpha-2,8-
Sialyltransferase
1

CADM3 cell adhesion molecule 3 GAPDHS glyceraldehyde-3-
phosphate dehydro-
genase, spermato-
genic

PGBD5 piggyBac transposable
element derived 5

TCN1 transcobalamin I
(vitamin B12 bind-
ing protein

CD200 CD200 molecule GJB1 gap junction protein,
beta 1, 32kDa

PKN3 protein kinase N3 TFF3 trefoil factor 3
(intestinal)

CDH19 cadherin 19, type 2 GOLGA7B golgin A7 family,
member B

PKNOX2 PBX/knotted 1 homeobox
2

THEM6 thioesterase
superfamily mem-
ber 6

Whole Transcriptome Analysis of Melanocytes

PLOS ONE | DOI:10.1371/journal.pone.0115717 December 29, 2014 7 / 17



(S2 Table). In addition genes, which are related to viral and bacterial infection

defense mechanism - interferon induced protein genes [34] IFI27, IFI35, IFI44,

IFI44L, IFI6, IFIT1, IFIT2, IFIT3, IFITM1, IFITM2 and IFITM3, were highly

expressed in MC compared to KC (S2 Table). KC have been shown to be the key

players in modulating the immunological status of physiological and pathological

skin; being the first sensors of harmful agents, they secrete inhibitory and

stimulating cytokines, and activate other immune competent cells (e.g.

Langerhans cells) [35]. Our data suggest that the role of MC in cutaneous immune

system regulation might be more extensive than anticipated so far.

Table 2. Cont.

Uniquely expressed genes in melanocytes

Symbol Gene Name Symbol Gene Name Symbol Gene Name Symbol Gene Name

CGREF1 cell growth regulator with
EF-hand domain 1

GPR19 G protein-coupled
receptor 19

PLA1A phospholipase A1 mem-
ber A

TLR1 toll-like receptor
1

CHRNA6 cholinergic receptor, nico-
tinic, alpha 6 (neuronal)

GPRIN3 GPRIN family
member 3

PLEKHH1 pleckstrin homology
domain containing, family
H, 1

TMEM169 transmembrane
protein 169

CMPK2 cytidine monophosphate
(UMP-CMP) kinase 2

GREB1 Growth regulation
by estrogen in
breast cancer 1

PPM1H protein phosphatase,
Mg2+/Mn2+ dependent,
1H

TMEM229B transmembrane
protein 229B

CRISPLD1 cysteine-rich secretory
protein LCCL domain
containing 1

HELZ2 helicase with zinc
finger 2, transcrip-
tional coactivator

PRDM7 PR domain containing 7 TMEM56 transmembrane
protein 56

CSGALNACT1 chondroitin sulfate N-
acetylgalactosaminyl-
transferase 1

HOXB7 homeobox B7 PRKCB protein kinase C, beta TMEM71 transmembrane
protein 71

CSPG4 chondroitin sulfate
proteoglycan 4

HPDL 4-hydroxyphenyl-
pyruvate dioxygen-
ase-like

RAB20 RAB20, member RAS
oncogene family

TMPRSS5 transmembrane
protease, serine
5

CTTNBP2 cortactin binding protein
2

HSF4 heat shock tran-
scription factor 4

RNF157 ring finger protein 157 TRIM6 tripartite motif
containing 6

CXORF57 chromosome X open
reading frame 57

IL16 interleukin 16 RNF182 ring finger protein 182 TSPAN10 tetraspanin 10

CYTL1 cytokine-like 1 ITPR1 inositol 1,4,5-tri-
sphosphate recep-
tor, type 1

ROPN1 rhophilin associated tail
protein 1

TTYH2 tweety homolog 2
(Drosophila)

DISC1 disrupted in schizophrenia
1

KCNN2 potassium inter-
mediate/small con-
ductance calcium-
activated channel,
subfamily N, mem-
ber 2

RTKN2 rhotekin 2 WDR17 WD repeat
domain 17

DNMT3A DNA (cytosine-5-)-methyl-
transferase 3 alpha

KIAA1211 KIAA1211 RTP4 receptor (chemosensory)
transporter protein 4

ZNF280B zinc finger protein
280B

DPY19L2 dpy-19-like 2 (C. elegans) LPL lipoprotein lipase RUNX3 runt-related transcription
factor 3

EGFL8 Epidermal growth factor-
like protein 8; Lysosomal
thioesterase PPT2

LRRC45 leucine rich repeat
containing 45

RXRG retinoid X receptor,
gamma

The list of genes, expressed in MC, but not in KC and FB.

doi:10.1371/journal.pone.0115717.t002
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Importantly, we could identify a set of MC-specific genes previously not

described by other researchers. In many cases the functions of these genes are

poorly characterized and further experiments are needed to identify their precise

role in MC (Table 2).

A number of genes that were unique for MC (CA8, CHRNA6, CTTNBP2,

EPHA5, FAXC, KCNN2, SCG2, SLITRK2) (Table 2) refer to MC’s origin from the

neural crest [36–44]. Additionally, a number of genes (ANO5, CGREF1, EGFL8,

ENTHD1 and ITPR1) involved in calcium-mediated processes were also uniquely

expressed in MC (Table 2).

Next we identified a number of genes that were not uniquely expressed in MC

but were specifically upregulated in melanocyte culture. Their specific role in

melanocytes is unclear, but based on the existing biological data these genes can be

divided into following functional classes: tumorogenesis, inflammation and stem

cell related genes.

Melanocytes and tumorogenesis

Genes belonging to pathways involved in tumor progression are more

characteristic to MC than to KC and FB. High expression of tumor suppressive

genes [45–48] and its candidate genes such as ARL9, C10orf90, SLC22A18,

DAPK1, BEX1, PYHIN1, IGSF8 could be observed in MC compared to KC and FB

(S2 Table). Interestingly, a novel tumor suppressor IGLON family genes

(IGLON2, IGLON 3 and IGLON4) were all detectable in MC. IGLON3 also

known as LSAMP was prominently expressed in MC compared to KC and FB

(S2 Table). IGLON family genes are mainly described as regulators of nerve

growth factors but recent studies have shown their strong tumor suppressive

capacities [49].

Fig. 1. The number of differentially expressed genes in each study group - melanocyte (MC),
keratinocyte (KC), fibroblast (FB) and whole skin (Skin). Red triangles – upregulated genes, blue triangles
– downregulated genes.

doi:10.1371/journal.pone.0115717.g001
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A number of genes, which normally have a role in growth and dividing

processes or in apoptosis regulation, can play a role in cancer formation. For

example several RING-type zinc finger proteins, which function to avoid

uncontrolled proliferation and to be a part of embryonic development, act as

cancer development modulators [50]. As an example, certain RING finger

proteins RNF144A, RNF157 and RNF187 were specifically upregulated in MC

(S2 Table). DNAJA1 is increased in MC (S2 Table), which overexpression reduces

cancer cell survival [51].

Interestingly, laminin alpha 1 gene LAMA1 was highly expressed in MC

compared to KC and FB (S2 Table). Laminins are integral parts of the

extracellular matrix [52]. LAMA1 is present mostly in the early stages in most

tissues of the embryo and is not common for adult tissues [53]. These results

suggest that MC might have an important role in basement membrane formation

and remodeling and might refer to a higher potential of MC to transform into

tumorous cells.

The family of sialyltransferases, which comprises a large group of enzymes,

responsible for the synthesis of sialylated glycans, regulates immune response

including virus binding [54]. Sialylated glycans can be found on the surface of

many tumor cells where they counteract the recognition of malignant cells by the

immune system [55]. Our analysis identified several sialyltransferase genes

ST3GAL4, ST3GAL5, ST3GAL6, ST6GAL1, ST6GALNAC3, ST8SIA1 and

ST8SIA6, which were expressed at a higher level in MC compared to KC and FB

(S2 Table).

Further, we confirmed a differential expression of genes, which have already

been shown to be related to melanoma development. Such as chemokines, which

major role is to guide the migration of cells and mediate immune response are

important for tumor invasion and metastatic behavior [56]. We also showed that

CXCL5, CCL28 and chemokine-like protein FAM19A5 were significantly more

expressed in MC compared to KC and FB (S2 Table). Additionally, a few genes,

which regulate angiogenesis (semaphorins SEMA4C and SEMA6A, matrix

metalloproteinases MMP8 and MMP17 [57–59] and are thereby essential for

malignant processes, had a higher expression level in MC compared to KC and FB

(S2 Table). ABCC2, ABCB5 and ABCB6, which were also highly expressed in MC

compared to KC and FB (S2 Table), are the members of the ABC transporter

family. ABC proteins have been shown to be involved in multidrug resistance in

cancer treatment, but they also promote the pluripotency of embryonic cells and

sustain the self-renewal of stem cells [60].

Melanocytes and inflammation

Susceptibility of cells to malignancies is strongly connected both inflammatory

processes, but also their stem-cell-like properties. Inflammation influences cancer

development at different levels - predisposing precancerosis, misdirect immune

system, initiating invasion process etc. [61].

A glaring example about the relation of immune response and tumorogenesis is

a family of tumor necrosis factors (TNFs) and their receptors. Being strongly
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engaged both in immune system modulation and apoptosis regulation, they

trigger infiltration of inflammatory cells into tumorous tissue [62]. The cross-

regulation of TNF and interferon regulatory factors have been proposed recently

[63]. In line with this, the tumor necrosis factors receptors TNFRSF14, TNFRSF19

and interferon regulatory factors IFI6 and IRF4 were highly expressed in MC

compared to KB and FB (S2 Table).

In our previous study [12] a quantitative real-time PCR (QRT-PCR) analysis

based predesigned TaqMan Gene Expression Assays for selected interleukin 10

(IL10) family cytokine’s genes showed the differential gene expression in

cultivated MC relative to KC and FB. The data correlates well with the results

obtained in the present study. For example IL20RA and IL20RB had significantly

higher expression in KC compared to MC. Also IL22RA1 could be found in KC

and not in MC, whereas IL22RA2 gene was expressed in whole skin but not in

MC, KC or FB (S1 Table). Among the studied IL10 family cytokines (IL10, IL19,

IL20, IL22, IL24, IL26, IL28B, IL29) and their receptors (IL10RA, IL10RB,

IL20RA, IL20RB, IL22RA1, IL22RA2, IL28RA), IL24 was the most prominent

cytokine in MC, which was hardly detectable in KC and FB (S2 Table). IL10 family

of cytokines are responsible for host defense mechanisms and have both have both

pro-inflammatory and anti-inflammatory roles [64].

Chronic inflammation is strongly connected to oxidative stress processes [65].

Melanin biosynthesis itself generates a large amount of free radicals [66], therefore

it is crucial to have an efficient control system, which can balance the

inflammatory process before it damages DNA or destroys the cell. For example,

we found FOXO3 transcription factor, which coordinates reduction/oxidation

balance in neural stem cells [67] and ATM, which assists cells in recognizing

damaged, but is also modulating the antioxidant system, and glutathione

peroxidase genes GPX3, GPX7 and GPX8, which regulate intracellular reactive

oxygen species balance [68], to be upregulated in MC compared to KC and FB

(S2 Table).

Stem cells-like properties

Cultured MC expressed a wide range of genes, characteristic for stem cells.

Evidence shows that several pathways that are important in normal stem cells

(BCL2 family genes, Notch, Sonic hedgehog and Wnt signaling pathways), may

also act in cancer development [69, 70]. For instance, we saw the highest level of

antiapoptotic BCL2 and BCL2A1 and stem cell factor inducer [71] RCAN1

expression level in MC when compared to KC, FB and the whole skin (S2 Table).

Interestingly, CD200 was uniquely expressed in MC (Table 2). CD200 has been

proposed to be a follicular stem cell marker, but its expression increases also with

apoptosis and cancers overexpressing CD200 expand and metastasize more

rapidly [72]. And, as mentioned above, the expression of S100 calcium-binding

proteins, which are specifically expressed in cells with stem cell properties was

increased in MC (S2 Table). Tumor cells and stem cells have similarities in their

self-renewal process; they have extensive proliferative potential and stem cells are

often a target for malignant genetic transformations [69]. These stem-cell-like
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properties have brought forth MC as a potential source for induced pluripotent

stem cells (iPSCs) [73].

Pathway analysis of melanocytes

Pathway analysis of differentially expressed genes also described MC as active and

intensively dividing cell population in cell culture (Fig. 2). We identified a

number of pathways prevalent in MC, which were characteristic for ongoing

regenerative process and could be related to cell dividing processes: genes

regulating mitotic activity and cell cycle, DNA replication and packing,

assembling and metabolism of different cellular components (cytoskeleton,

structural macromolecules), formation of lysosome and Golgi complex etc.

(Fig. 2). Consequently, gene expression profile corresponding to enhanced

metabolic activity could be also observed.

Although the gene expression pattern analysis describes the cultured MC as

highly proliferative cells we have to consider that the high proliferation rate is

characteristic only to MC’s cell in culture and does not reflect the actual situation

in vivo. The cell culture conditions include less cell-cell contacts and a high level

of growth factors reminiscent of active regenerative state (like in case of wound

healing). Thus the analysis of gene expression pattern of cultured cells does not

reflect the homeostatic state of the cells in a tissue but rather are expected to

describe their response to the injury. On the other hand, a number of well-

characterized cell type-specific genes could be readily identified from each cell

population analyzed suggesting that the low-passage cultured cells have well

retained their identity. Since the cell culture has remained as a gold standard in

order to obtain sufficient amount of relatively homogenous cell populations for

tissue engineering and toxicity testing, knowing the characteristic properties of

cells in culture is instrumental for their further use in ex-vivo applications.

Conclusions

In this study we have identified a number of genes and pathways, which are

characteristic or unique for MC compared to KC and FB. We also demonstrated

the difference between gene expression pattern of MC culture and the whole skin.

The data presented provide an insight into the various possible roles of MC in the

skin. As expected by the rapid growth in the cell culture, our differential gene

expression and pathway analyses described MC as cells with a high proliferative

capacity in vitro compared to KC an FB. That might suggest they have preserved

the readiness to regenerate and some stem-cells-like properties more than KC and

FB. However, these properties make MC the most vulnerable cells in the skin and

provide an explanation to their increased susceptibility to harmful environment
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agents (eg UV exposure) and high incidence rate of malignant melanoma. On the

other hand, the increased stem cell-like properties might give MC a good self-

renewing potential and also advocate for their use as a potential source for

induced pluripotent stem cells for therapeutic purposes.

Fig. 2. Comparative pathway analysis of MC and KC, FB and whole skin. Red plots indicate pathways, which were prominently expressed in MC. Blue
plots mark pathways, which were downregulated in MC (A, B, C) and concomitantly upregulated in the whole skin (A), KC (B) and FB (C), respectively. The
word sizes in wordclouds are defined by the p-values.

doi:10.1371/journal.pone.0115717.g002
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Supporting Information

S1 Fig. Multidimensional scaling blot for visualizing the level of similarity of

individual samples in KC, MC, FB and whole skin (WS) groups. The function

plotMDS in edgeR package evaluates the similarity of MC, KC, FB and whole skin

replicate samples that were used in our experiment. It calculates the root-mean-

square of top 500 genes with largest absolute log2 fold change between the two

samples, termed leading log2-fold-change. From the MDS plot it is quite clear that

the distinction between the MC, KC and FB is prominent over the distinction of

samples retrieved from the same individual.

doi:10.1371/journal.pone.0115717.s001 (PDF)

S1 Table. RPKM values of genes we detected in MC, KC, FB and the whole skin.

A gene was considered as expressed only if the RPKM value in all samples of the

corresponding cell type was above the cutoff (0.95). Conversely, the gene was

labeled as not expressed if the RPKM value was below 0.95 in at least one of the

samples.

doi:10.1371/journal.pone.0115717.s002 (XLSX)

S2 Table. List of differentially expressed genes comparing MC to KC, FB and

whole skin.

doi:10.1371/journal.pone.0115717.s003 (XLSX)

S3 Table. List of pathways (based on differentially expressed genes), prominent

in MC compared to KC, FB and whole skin.

doi:10.1371/journal.pone.0115717.s004 (XLSX)

Author Contributions

Conceived and designed the experiments: PR KK SK. Performed the experiments:

PR ER. Analyzed the data: SI PR. Contributed reagents/materials/analysis tools:

OP EV SK KK HS. Wrote the paper: PR VJ SI.

References

1. Hoath SB, Leahy DG (2003) The organization of human epidermis: functional epidermal units and phi
proportionality. J Invest Dermatol 121: 1440–1446.

2. Miller CC, Godeau G, Lebreton-DeCoster C, Desmouliere A, Pellat B, et al. (2003) Validation of a
morphometric method for evaluating fibroblast numbers in normal and pathologic tissues. Exp Dermatol
12: 403–411.

3. Randolph RK, Simon M (1998) Dermal fibroblasts actively metabolize retinoic acid but not retinol.
J Invest Dermatol 111: 478–484.

4. Thingnes J, Lavelle TJ, Hovig E, Omholt SW (2012) Understanding the Melanocyte Distribution in
Human Epidermis: An Agent-Based Computational Model Approach. PLoS One 7.

5. Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445: 843–850.

6. Chakraborty AK, Funasaka Y, Slominski A, Ermak G, Hwang J, et al. (1996) Production and release
of proopiomelanocortin (POMC) derived peptides by human melanocytes and keratinocytes in culture:
regulation by ultraviolet B. Biochim Biophys Acta 1313: 130–138.

Whole Transcriptome Analysis of Melanocytes

PLOS ONE | DOI:10.1371/journal.pone.0115717 December 29, 2014 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0115717.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0115717.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0115717.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0115717.s004


7. Funasaka Y, Chakraborty AK, Hayashi Y, Komoto M, Ohashi A, et al. (1998) Modulation of
melanocyte-stimulating hormone receptor expression on normal human melanocytes: evidence for a
regulatory role of ultraviolet B, interleukin-1alpha, interleukin-1beta, endothelin-1 and tumour necrosis
factor-alpha. Br J Dermatol 139: 216–224.

8. Costin GE, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response
to stress. FASEB J 21: 976–994.

9. Slominski A (2009) Neuroendocrine activity of the melanocyte. Exp Dermatol 18: 760–763.

10. Goldsmith LA, Fitzpatrick TB, Stephen Katz S, Gilchrest B, Paller A, et al. (2012) Fitzpatrick’s
dermatology in general medicine. New York: McGraw-Hill Professional. p. p.

11. Lee JS, Kim DH, Choi DK, Kim CD, Ahn GB, et al. (2013) Comparison of Gene Expression Profiles
between Keratinocytes, Melanocytes and Fibroblasts. Ann Dermatol 25: 36–45.

12. Reemann P, Reimann E, Suutre S, Paavo M, Loite U, et al. (2013) Expression of Class II Cytokine
Genes in Children’s Skin. Acta Derm Venereol.

13. Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, et al. (2004) Expression profiling reveals novel
pathways in the transformation of melanocytes to melanomas. Cancer Res 64: 5270–5282.

14. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, et al. (2013) TopHat2: accurate alignment of
transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14: R36.

15. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome. Genome Biol 10: R25.

16. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression
estimates by correcting for fragment bias. Genome Biol 12: R22.

17. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26: 139–140.

18. Ramskold D, Wang ET, Burge CB, Sandberg R (2009) An abundance of ubiquitously expressed genes
revealed by tissue transcriptome sequence data. PLoS Comput Biol 5: e1000598.

19. Reimand J, Arak T, Vilo J (2011) g:Profiler-a web server for functional interpretation of gene lists (2011
update). Nucleic Acids Research 39: W307–W315.

20. Cichorek M, Wachulska M, Stasiewicz A, Tyminska A (2013) Skin melanocytes: biology and
development. Postepy Dermatol Alergol 30: 30–41.

21. Hou L, Pavan WJ (2008) Transcriptional and signaling regulation in neural crest stem cell-derived
melanocyte development: do all roads lead to Mitf? Cell Res 18: 1163–1176.

22. Kawakami A, Fisher DE (2011) Key discoveries in melanocyte development. J Invest Dermatol 131:
E2–4.

23. Roberts DW, Newton RA, Beaumont KA, Helen Leonard J, Sturm RA (2006) Quantitative analysis of
MC1R gene expression in human skin cell cultures. Pigment Cell Res 19: 76–89.

24. Liu W, Peng Y, Tobin DJ (2013) A new 12-gene diagnostic biomarker signature of melanoma revealed
by integrated microarray analysis. PeerJ 1: e49.

25. Koga Y, Pelizzola M, Cheng E, Krauthammer M, Sznol M, et al. (2009) Genome-wide screen of
promoter methylation identifies novel markers in melanoma. Genome Research 19: 1462–1470.

26. Du J, Miller AJ, Widlund HR, Horstmann MA, Ramaswamy S, et al. (2003) MLANA/MART1 and SILV/
PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol
163: 333–343.

27. Lee ST, Nicholls RD, Jong MT, Fukai K, Spritz RA (1995) Organization and sequence of the human P
gene and identification of a new family of transport proteins. Genomics 26: 354–363.

28. Gillis JS (2006) Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications
for tumor antigen specific immunotherapy. J Transl Med 4: 27.

29. Auge JM, Molina R, Filella X, Bosch E, Gonzalez Cao M, et al. (2005) S-100beta and MIA in advanced
melanoma in relation to prognostic factors. Anticancer Res 25: 1779–1782.

Whole Transcriptome Analysis of Melanocytes

PLOS ONE | DOI:10.1371/journal.pone.0115717 December 29, 2014 15 / 17



30. de Souza CF, Xander P, Monteiro AC, Silva AG, da Silva DC, et al. (2012) Mining gene expression
signature for the detection of pre-malignant melanocytes and early melanomas with risk for metastasis.
PLoS One 7: e44800.

31. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat
Struct Mol Biol 20: 259–266.

32. Verhey KJ, Kaul N, Soppina V (2011) Kinesin Assembly and Movement in Cells. Annual Review of
Biophysics, Vol 40 40: 267–288.

33. Chen ZX, Wallis K, Fell SM, Sobrado VR, Hemmer MC, et al. (2014) RNA Helicase A Is a Downstream
Mediator of KIF1Bbeta Tumor-Suppressor Function in Neuroblastoma. Cancer Discov 4: 434–451.

34. Itsui Y, Sakamoto N, Kurosaki M, Kanazawa N, Tanabe Y, et al. (2006) Expressional screening of
interferon-stimulated genes for antiviral activity against hepatitis C virus replication. Journal of Viral
Hepatitis 13: 690–700.

35. Freinkel RK, Woodley D (2001) The biology of the skin. New York: Parthenon Pub. Group. 432 p. p.

36. Kos R, Reedy MV, Johnson RL, Erickson CA (2001) The winged-helix transcription factor FoxD3 is
important for establishing the neural crest lineage and repressing melanogenesis in avian embryos.
Development 128: 1467–1479.

37. Chakrabarty K, Von Oerthel L, Hellemons A, Clotman F, Espana A, et al. (2012) Genome wide
expression profiling of the mesodiencephalic region identifies novel factors involved in early and late
dopaminergic development. Biol Open 1: 693–704.

38. Jiao Y, Yan J, Zhao Y, Donahue LR, Beamer WG, et al. (2005) Carbonic anhydrase-related protein VIII
deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics 171: 1239–
1246.

39. Chen YK, Hsueh YP (2012) Cortactin-binding protein 2 modulates the mobility of cortactin and regulates
dendritic spine formation and maintenance. J Neurosci 32: 1043–1055.

40. Akaneya Y, Sohya K, Kitamura A, Kimura F, Washburn C, et al. (2010) Ephrin-A5 and EphA5
interaction induces synaptogenesis during early hippocampal development. PLoS One 5: e12486.

41. Hill KK, Bedian V, Juang JL, Hoffmann FM (1995) Genetic Interactions between the Drosophila
Abelson (Abl) Tyrosine Kinase and Failed Axon Connections (Fax), a Novel Protein in Axon Bundles.
Genetics 141: 595–606.

42. Szatanik M, Vibert N, Vassias I, Guenet JL, Eugene D, et al. (2008) Behavioral effects of a deletion in
Kcnn2, the gene encoding the SK2 subunit of small-conductance Ca2+-activated K+ channels.
Neurogenetics 9: 237–248.

43. Hotta K, Hosaka M, Tanabe A, Takeuchi T (2009) Secretogranin II binds to secretogranin III and forms
secretory granules with orexin, neuropeptide Y, and POMC. Journal of Endocrinology 202: 111–121.

44. Yim YS, Kwon Y, Nam J, Yoon HI, Lee K, et al. (2013) Slitrks control excitatory and inhibitory synapse
formation with LAR receptor protein tyrosine phosphatases. Proc Natl Acad Sci U S A 110: 4057–4062.

45. Louro R, Nakaya HI, Paquola AC, Martins EA, da Silva AM, et al. (2004) RASL11A, member of a
novel small monomeric GTPase gene family, is down-regulated in prostate tumors. Biochem Biophys
Res Commun 316: 618–627.

46. Zhang X, Zhang Q, Zhang J, Qiu L, Yan S-S, et al. (2010) FATS is a transcriptional target of p53 and
associated with antitumor activity. Molecular Cancer 9: 244.

47. Ahmed IA, Pusch CM, Hamed T, Rashad H, Idris A, et al. (2010) Epigenetic alterations by methylation
of RASSF1A and DAPK1 promoter sequences in mammary carcinoma detected in extracellular tumor
DNA. Cancer Genet Cytogenet 199: 96–100.

48. Foltz G, Ryu GY, Yoon JG, Nelson T, Fahey J, et al. (2006) Genome-wide analysis of epigenetic
silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. Cancer
Res 66: 6665–6674.

49. Chen J, Lui WO, Vos MD, Clark GJ, Takahashi M, et al. (2003) The t(1;3) breakpoint-spanning genes
LSAMP and NORE1 are involved in clear cell renal cell carcinomas. Cancer Cell 4: 405–413.

50. Marzook H, Li DQ, Nair VS, Mudvari P, Reddy SD, et al. (2012) Metastasis-associated protein 1 drives
tumor cell migration and invasion through transcriptional repression of RING finger protein 144A. J Biol
Chem 287: 5615–5626.

Whole Transcriptome Analysis of Melanocytes

PLOS ONE | DOI:10.1371/journal.pone.0115717 December 29, 2014 16 / 17



51. Stark JL, Mehla K, Chaika N, Acton TB, Xiao R, et al. (2014) Structure and Function of Human DnaJ
Homologue Subfamily A Member 1 (DNAJA1) and Its Relationship to Pancreatic Cancer. Biochemistry
53: 1360–1372.

52. Bair EL, Chen ML, McDaniel K, Sekiguchi K, Cress AE, et al. (2005) Membrane type 1 matrix
metalloprotease cleaves laminin-10 and promotes prostate cancer cell migration. Neoplasia 7: 380–389.

53. Ekblom P, Lonai P, Talts JF (2003) Expression and biological role of laminin-1. Matrix Biol 22: 35–47.

54. Kumari K, Gulati S, Smith DF, Gulati U, Cummings RD, et al. (2007) Receptor binding specificity of
recent human H3N2 influenza viruses. Virol J 4: 42.

55. Videira PA, Correia M, Malagolini N, Crespo HJ, Ligeiro D, et al. (2009) ST3Gal.I sialyltransferase
relevance in bladder cancer tissues and cell lines. BMC Cancer 9: 357.

56. Wu S, Singh S, Varney ML, Kindle S, Singh RK (2012) Modulation of CXCL-8 expression in human
melanoma cells regulates tumor growth, angiogenesis, invasion, and metastasis. Cancer Med 1: 306–
317.

57. Neufeld G, Sabag AD, Rabinovicz N, Kessler O (2012) Semaphorins in angiogenesis and tumor
progression. Cold Spring Harb Perspect Med 2: a006718.

58. Garcia-Areas R, Libreros S, Amat S, Keating P, Carrio R, et al. (2014) Semaphorin7A promotes tumor
growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice. Front
Physiol 5: 17.

59. Fang C, Wen G, Zhang L, Lin L, Moore A, et al. (2013) An important role of matrix metalloproteinase-8
in angiogenesis in vitro and in vivo. Cardiovasc Res 99: 146–155.

60. Padmanabhan R, Chen KG, Gillet JP, Handley M, Mallon BS, et al. (2012) Regulation and expression
of the ATP-binding cassette transporter ABCG2 in human embryonic stem cells. Stem Cells 30: 2175–
2187.

61. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, et al. (2013) Inflammation-induced cancer: crosstalk
between tumours, immune cells and microorganisms. Nat Rev Cancer 13: 759–771.

62. Wajant H (2009) The role of TNF in cancer. Results Probl Cell Differ 49: 1–15.

63. Cantaert T, Baeten D, Tak PP, van Baarsen LG (2010) Type I IFN and TNFalpha cross-regulation in
immune-mediated inflammatory disease: basic concepts and clinical relevance. Arthritis Res Ther 12:
219.

64. Cao S, Zhang X, Edwards JP, Mosser DM (2006) NF-kappaB1 (p50) homodimers differentially regulate
pro- and anti-inflammatory cytokines in macrophages. J Biol Chem 281: 26041–26050.

65. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer:
how are they linked? Free Radic Biol Med 49: 1603–1616.

66. Jimenez-Cervantes C, Martinez-Esparza M, Perez C, Daum N, Solano F, et al. (2001) Inhibition of
melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation
markers and possible involvement of microphthalmia transcription factor. J Cell Sci 114: 2335–2344.

67. Yeo H, Lyssiotis CA, Zhang YQ, Ying HQ, Asara JM, et al. (2013) FoxO3 coordinates metabolic
pathways to maintain redox balance in neural stem cells. Embo Journal 32: 2589–2602.

68. Wang K, Zhang T, Dong Q, Nice EC, Huang C, et al. (2013) Redox homeostasis: the linchpin in stem
cell self-renewal and differentiation. Cell Death Dis 4: e537.

69. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells.
Nature 414: 105–111.

70. White RM, Zon LI (2008) Melanocytes in development, regeneration, and cancer. Cell Stem Cell 3: 242–
252.

71. Wu Z, Li Y, MacNeil AJ, Junkins RD, Berman JN, et al. Calcineurin-Rcan1 interaction contributes to
stem cell factor-mediated mast cell activation. J Immunol 191: 5885–5894.

72. Rosenblum MD, Olasz E, Woodliff JE, Johnson BD, Konkol MC, et al. (2004) CD200 is a novel p53-
target gene involved in apoptosis-associated immune tolerance. Blood 103: 2691–2698.

73. Utikal J, Maherali N, Kulalert W, Hochedlinger K (2009) Sox2 is dispensable for the reprogramming of
melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122: 3502–3510.

Whole Transcriptome Analysis of Melanocytes

PLOS ONE | DOI:10.1371/journal.pone.0115717 December 29, 2014 17 / 17


	Section_1
	Section_2
	Section_3
	Section_4
	Section_5
	Section_6
	Section_7
	Section_8
	Section_9
	Section_10
	Section_11
	Section_12
	TABLE_1
	TABLE_2
	Section_13
	Figure 1
	Section_14
	Section_15
	Section_16
	Section_17
	Section_18
	Section_19
	Figure 2
	Section_20
	Section_21
	Section_22
	Section_23
	Section_24
	Section_25
	Section_26
	Section_27
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38
	Reference 39
	Reference 40
	Reference 41
	Reference 42
	Reference 43
	Reference 44
	Reference 45
	Reference 46
	Reference 47
	Reference 48
	Reference 49
	Reference 50
	Reference 51
	Reference 52
	Reference 53
	Reference 54
	Reference 55
	Reference 56
	Reference 57
	Reference 58
	Reference 59
	Reference 60
	Reference 61
	Reference 62
	Reference 63
	Reference 64
	Reference 65
	Reference 66
	Reference 67
	Reference 68
	Reference 69
	Reference 70
	Reference 71
	Reference 72
	Reference 73

