72 research outputs found

    Imaging Neuroinflammation in Progressive Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system CNS), where inflammation and neurodegeneration lead to irreversible neuronal damage. In MS, a dysfunctional immune system causes auto‐reactive lymphocytes to migrate into CNS where they initiate an inflammatory cascade leading to focal demyelination, axonal degeneration and neuronal loss. One of the hallmarks of neuronal injury and neuroinflammation is the activation of microglia. Activated microglia are found not only in the focal inflammatory lesions, but also diffusely in the normal‐appearing white matter (NAWM), especially in progressive MS. The purine base, adenosine is a ubiquitous neuromodulator in the CNS and also participates in the regulation of inflammation. The effect of adenosine mediated via adenosine A2A receptors has been linked to microglial activation, whereas modulating A2A receptors may exert neuroprotective effects. In the majority of patients, MS presents with a relapsing disease course, later advancing to a progressive phase characterised by a worsening, irreversible disability. Disease modifying treatments can reduce the severity and progression in relapsing MS, but no efficient treatment exists for progressive MS. The aim of this research was to investigate the prevalence of adenosine A2A receptors and activated microglia in progressive MS by using in vivo positron emission tomography (PET) imaging and [11C]TMSX and [11C](R)‐PK11195 radioligands. Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed to evaluate structural brain damage. Non‐invasive input function methods were also developed for the analyses of [11C]TMSX PET data. Finally, histopathological correlates of [11C](R)‐PK11195 radioligand binding related to chronic MS lesions were investigated in post‐mortem samples of progressive MS brain using autoradiography and immunohistochemistry. [11C]TMSX binding to A2A receptors was increased in NAWM of secondary progressive MS (SPMS) patients when compared to healthy controls, and this correlated to more severe atrophy in MRI and white matter disintegration (reduced fractional anisotropy, FA) in DTI. The non‐invasive input function methods appeared as feasible options for brain [11C]TMSX images obviating arterial blood sampling. [11C](R)‐PK11195 uptake was increased in the NAWM of SPMS patients when compared to patients with relapsing MS and healthy controls. Higher [11C](R)‐PK11195 binding in NAWM and total perilesional area of T1 hypointense lesions was associated with more severe clinical disability, increased brain atrophy, higher lesion load and reduced FA in NAWM in the MS patients. In autoradiography, increased perilesional [11C](R)‐PK11195 uptake was associated with increased microglial activation identified using immunohistochemistry. In conclusion, brain [11C]TMSX PET imaging holds promise in the evaluation of diffuse neuroinflammation in progressive MS. Being a marker of microglial activation, [11C](R)‐ PK11195 PET imaging could possibly be used as a surrogate biomarker in the evaluation of the neuroinflammatory burden and clinical disease severity in progressive MS.Siirretty Doriast

    In Vivo

    Get PDF
    Adenosine receptors are G-protein coupled P1 purinergic receptors that are broadly expressed in the peripheral immune system, vasculature, and the central nervous system (CNS). Within the immune system, adenosine 2A (A2A) receptor-mediated signaling exerts a suppressive effect on ongoing inflammation. In healthy CNS, A2A receptors are expressed mainly within the neurons of the basal ganglia. Alterations in A2A receptor function and expression have been noted in movement disorders, and in Parkinson’s disease pharmacological A2A receptor antagonism leads to diminished motor symptoms. Although A2A receptors are expressed only at a low level in the healthy CNS outside striatum, pathological challenge or inflammation has been shown to lead to upregulation of A2A receptors in extrastriatal CNS tissue, and this has been successfully quantitated using in vivo positron emission tomography (PET) imaging and A2A receptor-binding radioligands. Several radioligands for PET imaging of A2A receptors have been developed in recent years, and A2A receptor-targeting PET imaging may thus provide a potential additional tool to evaluate various aspects of neuroinflammation in vivo. This review article provides a brief overview of A2A receptors in healthy brain and in a selection of most important neurological diseases and describes the recent advances in A2A receptor-targeting PET imaging studies

    In Vivo PET Imaging of Adenosine 2A Receptors in Neuroinflammatory and Neurodegenerative Disease

    Get PDF
    Adenosine receptors are G-protein coupled P1 purinergic receptors that are broadly expressed in the peripheral immune system, vasculature, and the central nervous system (CNS). Within the immune system, adenosine 2A (A2A) receptor-mediated signaling exerts a suppressive effect on ongoing inflammation. In healthy CNS, A2A receptors are expressed mainly within the neurons of the basal ganglia. Alterations in A2A receptor function and expression have been noted in movement disorders, and in Parkinson’s disease pharmacologicalA2A receptor antagonism leads to diminishedmotor symptoms. AlthoughA2A receptors are expressed only at a low level in the healthy CNS outside striatum, pathological challenge or inflammation has been shown to lead to upregulation of A2A receptors in extrastriatal CNS tissue, and this has been successfully quantitated using in vivo positron emission tomography (PET) imaging and A2A receptor-binding radioligands. Several radioligands for PET imaging of A2A receptors have been developed in recent years, and A2A receptor-targeting PET imaging may thus provide a potential additional tool to evaluate various aspects of neuroinflammation in vivo. This review article provides a brief overview of A2A receptors in healthy brain and in a selection of most important neurological diseases and describes the recent advances in A2A receptor-targeting PET imaging studies. </p

    Evaluation of microglial activation in multiple sclerosis patients using positron emission tomography

    Get PDF
    Understanding the mechanisms underlying progression in multiple sclerosis (MS) is one of the key elements contributing to the identification of appropriate therapeutic targets for this under-managed condition. In addition to plaque-related focal inflammatory pathology typical for relapsing remitting MS there are, in progressive MS, widespread diffuse alterations in brain areas outside the focal lesions. This diffuse pathology is tightly related to microglial activation and is co-localized with signs of neurodegeneration. Microglia are brain-resident cells of the innate immune system and overactivation of microglia is associated with several neurodegenerative diseases. Understanding the role of microglial activation in relation to developing neurodegeneration and disease progression may provide a key to developing therapies to target progressive MS. 18-kDa translocator protein (TSPO) is a mitochondrial molecule upregulated in microglia upon their activation. Positron emission tomography (PET) imaging using TSPO-binding radioligands provides a method to assess microglial activation in patients in vivo. In this mini-review, we summarize the current status of TSPO imaging in the field of MS. In addition, the review discusses new insights into the potential use of this method in treatment trials and in clinical assessment of progressive MS.</p

    Signal features of surface electromyography in advanced Parkinson's disease during different settings of deep brain stimulation

    Get PDF
    Objective: Electromyography (EMG) and acceleration (ACC) measurements are potential methods for quantifying efficacy of deep brain stimulation (DBS) treatment in Parkinson's disease (PD). The treatment efficacy depends on the settings of DBS parameters (pulse amplitude, frequency and width). This study quantified, if EMG and ACC signal features differ between different DBS settings and if DBS effect is unequal between different muscles. Methods: EMGs were measured from biceps brachii (BB) and tibialis anterior (TA) muscles of 13 PD patients. ACCs were measured from wrists. Measurements were performed during seven different settings of DBS and analyzed using methods based on spectral analysis, signal morphology and nonlinear dynamics. Results: The results showed significant within-subject differences in the EMG signal kurtosis, correlation dimension, recurrence rate and EMG-ACC coherence between different DBS settings for BB but not for TA muscles. Correlations between EMG feature values and clinical rest tremor and rigidity scores were weak but significant. Conclusions: Surface EMG features differed between different DBS settings and DBS effect was unequal between upper and lower limb muscles. Significance: EMG changes pointed to previously defined optimal settings in most of patients, which should be quantified even more deeply in the upcoming studies. (C) 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.Peer reviewe

    Levodopa-Induced Changes in Electromyographic Patterns in Patients with Advanced Parkinson's Disease

    Get PDF
    Levodopa medication is the most efficient treatment for motor symptoms of Parkinson's disease (PD). Levodopa significantly alleviates rigidity, rest tremor, and bradykinesia in PD. The severity of motor symptoms can be graded with UPDRS-III scale. Levodopa challenge test is routinely used to assess patients' eligibility to deep-brain stimulation (DBS) in PD. Feasible and objective measurements to assess motor symptoms of PD during levodopa challenge test would be helpful in unifying the treatment. Twelve patients with advanced PD who were candidates for DBS treatment were recruited to the study. Measurements were done in four phases before and after levodopa challenge test. Rest tremor and rigidity were evaluated using UPDRS-III score. Electromyographic (EMG) signals from biceps brachii and kinematic signals from forearm were recorded with wireless measurement setup. The patients performed two different tasks: arm isometric tension and arm passive flexion-extension. The electromyographic and the kinematic signals were analyzed with parametric, principal component, and spectrum-based approaches. The principal component approach for isometric tension EMG signals showed significant decline in characteristics related to PD during levodopa challenge test. The spectral approach on passive flexion-extension EMG signals showed a significant decrease on involuntary muscle activity during the levodopa challenge test. Both effects were stronger during the levodopa challenge test compared to that of patients' personal medication. There were no significant changes in the parametric approach for EMG and kinematic signals during the measurement. The results show that a wireless and wearable measurement and analysis can be used to study the effect of levodopa medication in advanced Parkinson's disease.Peer reviewe

    Positron emission tomography imaging in evaluation of MS pathology in vivo

    Get PDF
    Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood-brain barrier-penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.</p

    Changes in elbow flexion EMG morphology during adjustment of deep brain stimulator in advanced Parkinson's disease

    Get PDF
    Publisher Copyright: © 2022 Ruonala et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Objective Deep brain stimulation (DBS) is an effective treatment for motor symptoms of advanced Parkinson's disease (PD). Currently, DBS programming outcome is based on a clinical assessment. In an optimal situation, an objectively measurable feature would assist the operator to select the appropriate settings for DBS. Surface electromyographic (EMG) measurements have been used to characterise the motor symptoms of PD with good results; with proper methodology, these measurements could be used as an aid to program DBS. Methods Muscle activation measurements were performed for 13 patients who had advanced PD and were treated with DBS. The DBS pulse voltage, frequency, and width were changed during the measurements. The measured EMG signals were analysed with parameters that characterise the EMG signal morphology, and the results were compared to the clinical outcome of the adjustment. Results The EMG signal correlation dimension, recurrence rate, and kurtosis changed significantly when the DBS settings were changed. DBS adjustment affected the signal recurrence rate the most. Relative to the optimal settings, increased recurrence rates (median ± IQR) 1.1 ± 0.5 (-0.3 V), 1.3 ± 1.1 (+0.3 V), 1.7 ± 0.4 (-30 Hz), 1.7 ± 0.8 (+30 Hz), 2.0 ± 1.7 (+30 Όs), and 1.5 ± 1.1 (DBS off) were observed. With optimal stimulation settings, the patients' Unified Parkinson's Disease Rating Scale motor part (UPDRS-III) score decreased by 35% on average compared to turning the device off. However, the changes in UPRDS-III arm tremor and rigidity scores did not differ significantly in any settings compared to the optimal stimulation settings. Conclusion Adjustment of DBS treatment alters the muscle activation patterns in PD patients. The changes in the muscle activation patterns can be observed with EMG, and the parameters calculated from the signals differ between optimal and non-optimal settings of DBS. This provides a possibility for using the EMG-based measurement to aid the clinicians to adjust the DBS.Peer reviewe

    Rituximab in the treatment of multiple sclerosis in the Hospital District of Southwest Finland

    Get PDF
    BackgroundThere are already numerous B-cell depleting monoclonal anti-CD20 antibodies which have been used to reduce the inflammatory burden associated with multiple sclerosis (MS). We describe here our experience of treating MS-patients with B-cell depleting rituximab.Patients and methodsAll MS-patients (n = 72) who had received rituximab treatment for at least six months by January 2019 were identified from the patient charts at the Turku University Hospital. Information about MS disease subtype, disease severity, MR-imaging outcomes and B-cell counts were collected from the charts.ResultsRituximab was well received and well tolerated by the patients. There were no serious infusion-related side effects. The most serious adverse event that led to treatment discontinuation was neutropenia. After rituximab initiation the annual number of relapses was decreased in the relapsing remitting and secondary progressive MS groups and the mean number of gadolinium-enhancing lesions was decreased in relapsing remitting MS. Our study confirms the usability of rituximab treatment for MS in the Finnish health care environment.ConclusionsOff-label rituximab-treatment can be successfully used to reduce MS disease burden for the benefit of MS patients.</div

    Diurnal patterns in Scots pine stem oleoresin pressure in a boreal forest

    Get PDF
    Coniferous tree stems contain large amounts of oleoresin under positive pressure in the resin ducts. Studies in North-American pines indicated that the stem oleoresin exudation pressure (OEP) correlates negatively with transpiration rate and soil water content. However, it is not known how the OEP changes affect the emissions of volatile vapours from the trees. We measured the OEP, xylem diameter changes indicating changes in xylem water potential and monoterpene emissions under field conditions in mature Scots pine (Pinus sylvestris L.) trees in southern Finland. Contrary to earlier reports, the diurnal OEP changes were positively correlated with temperature and transpiration rate. OEP was lowest at the top part of the stem, where water potentials were also more negative, and often closely linked to ambient temperature and stem monoterpene emissions. However, occasionally OEP was affected by sudden changes in vapour pressure deficit (VPD), indicating the importance of xylem water potential on OEP as well. We conclude that the oleoresin storage pools in tree stems are in a dynamic relationship with ambient temperature and xylem water potential, and that the canopy monoterpene emission rates may therefore be also regulated by whole tree processes and not only by the conditions prevailing in the upper canopy.Peer reviewe
    • 

    corecore