1,692 research outputs found

    The Puzzle of the Flyby Anomaly

    Full text link
    Close planetary flybys are frequently employed as a technique to place spacecraft on extreme solar system trajectories that would otherwise require much larger booster vehicles or may not even be feasible when relying solely on chemical propulsion. The theoretical description of the flybys, referred to as gravity assists, is well established. However, there seems to be a lack of understanding of the physical processes occurring during these dynamical events. Radio-metric tracking data received from a number of spacecraft that experienced an Earth gravity assist indicate the presence of an unexpected energy change that happened during the flyby and cannot be explained by the standard methods of modern astrodynamics. This puzzling behavior of several spacecraft has become known as the flyby anomaly. We present the summary of the recent anomalous observations and discuss possible ways to resolve this puzzle.Comment: 6 pages, 1 figure. Accepted for publication by Space Science Review

    Quantum dot emission from site-controlled ngan/gan micropyramid arrays

    Get PDF
    InxGa1−xN quantum dots have been fabricated by the selective growth of GaN micropyramid arrays topped with InGaN/GaN quantum wells. The spatially, spectrally, and time-resolved emission properties of these structures were measured using cathodoluminescence hyperspectral imaging and low-temperature microphotoluminescence spectroscopy. The presence of InGaN quantum dots was confirmed directly by the observation of sharp peaks in the emission spectrum at the pyramid apices. These luminescence peaks exhibit decay lifetimes of approximately 0.5 ns, with linewidths down to 650 me

    TASI Lectures on the Cosmological Constant

    Full text link
    The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.Comment: 39 pages, 3 figure

    Sedimentology and kinematics of a large, retrogressive growth-fault system in Upper Carboniferous deltaic sediments, western Ireland

    Get PDF
    Growth faulting is a common feature of many deltaic environments and is vital in determining local sediment dispersal and accumulation, and hence in controlling the resultant sedimentary facies distribution and architecture. Growth faults occur on a range of scales, from a few centimetres to hundreds of metres, with the largest growth faults frequently being under-represented in outcrops that are often smaller than the scale of feature under investigation. This paper presents data from the exceptionally large outcrops of the Cliffs of Moher, western Ireland, where a growth-fault complex affects strata up to 60 m in thickness and extends laterally for 3 km. Study of this Namurian (Upper Carboniferous) growth-fault system enables the relationship between growth faulting and sedimentation to be detailed and permits reconstruction of the kinematic history of faulting. Growth faulting was initiated with the onset of sandstone deposition on a succession of silty mudstones that overlie a thin, marine shale. The decollement horizon developed at the top of the marine shale contact for the first nine faults, by which time aggradation in the hangingwall exceeded 60 m in thickness. After this time, failure planes developed at higher stratigraphic levels and were associated with smaller scale faults. The fault complex shows a dominantly landward retrogressive movement, in which only one fault was largely active at any one time. There is no evidence of compressional features at the base of the growth faults, thus suggesting open-ended slides, and the faults display both disintegrative and non-disintegrative structure. Thin-bedded, distal mouth bar facies dominate the hangingwall stratigraphy and, in the final stages of growth-fault movement, erosion of the crests of rollover structures resulted in the highest strata being restricted to the proximity of the fault. These upper erosion surfaces on the fault scarp developed erosive chutes that were cut parallel to flow and are downlapped by the distal hangingwall strata of younger growth faults

    Dynamical surface structures in multi-particle-correlated surface growths

    Full text link
    We investigate the scaling properties of the interface fluctuation width for the QQ-mer and QQ-particle-correlated deposition-evaporation models. These models are constrained with a global conservation law that the particle number at each height is conserved modulo QQ. In equilibrium, the stationary roughness is anomalous but universal with roughness exponent α=1/3\alpha=1/3, while the early time evolution shows nonuniversal behavior with growth exponent ÎČ\beta varying with models and QQ. Nonequilibrium surfaces display diverse growing/stationary behavior. The QQ-mer model shows a faceted structure, while the QQ-particle-correlated model a macroscopically grooved structure.Comment: 16 pages, 10 figures, revte

    The Long-Term Future of Extragalactic Astronomy

    Get PDF
    If the current energy density of the universe is indeed dominated by a cosmological constant, then high-redshift sources will remain visible to us only until they reach some finite age in their rest-frame. The radiation emitted beyond that age will never reach us due to the acceleration of the cosmic expansion rate, and so we will never know what these sources look like as they become older. As a source image freezes on a particular time frame along its evolution, its luminosity distance and redshift continue to increase exponentially with observation time. The higher the current redshift of a source is, the younger it will appear as it fades out of sight. For the popular set of cosmological parameters, I show that a source at a redshift z=5-10 will only be visible up to an age of 4-6 billion years. Arguments relating the properties of high-redshift sources to present-day counterparts will remain indirect even if we continue to monitor these sources for an infinite amount of time. These sources will not be visible to us when they reach the current age of the universe.Comment: Phys. Rev. D, in press (2001

    A macroscopic multifractal analysis of parabolic stochastic PDEs

    Full text link
    It is generally argued that the solution to a stochastic PDE with multiplicative noise---such as u˙=12u"+uΟ\dot{u}=\frac12 u"+u\xi, where Ο\xi denotes space-time white noise---routinely produces exceptionally-large peaks that are "macroscopically multifractal." See, for example, Gibbon and Doering (2005), Gibbon and Titi (2005), and Zimmermann et al (2000). A few years ago, we proved that the spatial peaks of the solution to the mentioned stochastic PDE indeed form a random multifractal in the macroscopic sense of Barlow and Taylor (1989; 1992). The main result of the present paper is a proof of a rigorous formulation of the assertion that the spatio-temporal peaks of the solution form infinitely-many different multifractals on infinitely-many different scales, which we sometimes refer to as "stretch factors." A simpler, though still complex, such structure is shown to also exist for the constant-coefficient version of the said stochastic PDE.Comment: 41 page

    Aspects of the Noisy Burgers Equation

    Full text link
    The noisy Burgers equation describing for example the growth of an interface subject to noise is one of the simplest model governing an intrinsically nonequilibrium problem. In one dimension this equation is analyzed by means of the Martin-Siggia-Rose technique. In a canonical formulation the morphology and scaling behavior are accessed by a principle of least action in the weak noise limit. The growth morphology is characterized by a dilute gas of nonlinear soliton modes with gapless dispersion law with exponent z=3/2 and a superposed gas of diffusive modes with a gap. The scaling exponents and a heuristic expression for the scaling function follow from a spectral representation.Comment: 23 pages,LAMUPHYS LaTeX-file (Springer), 13 figures, and 1 table, to appear in the Proceedings of the XI Max Born Symposium on "Anomalous Diffusion: From Basics to Applications", May 20-24, 1998, Ladek Zdroj, Polan

    "Where the mask ends and the face begins is not certain": Mediating ethnicity and cheating geography in Jonny Steinberg's Little Liberia

    Get PDF
    Mixing historical commentary, reportage, biography and personal stories, South African writer Jonny Steinberg takes up the tale of a fractured African nation and its diaspora in Little Liberia: An African Odyssey in New York City (2011). The "little Liberia" founded in New York's urban jungle may have represented, for many of its inhabitants, a way to "cheat geography" by recreating a home away from home, but Little Liberia shows the reader it has not allowed them to cheat history. The book deals with the lives of two inhabitants of Park Hill Avenue on Staten Island, where nearly everyone is Liberian. Their conflict threatens to implode the community, igniting suspicions and accusations that had been bottled up since their exile. The article focuses on the interface of mediated ethnicity and citizenship related to the struggle for power in the diasporic Liberian community on Staten Island. Attention is also paid to feelings of identity of Little Liberia's author.DHE
    • 

    corecore