4,638 research outputs found

    Fragments of the earliest land plants

    Get PDF
    The earliest fossil evidence for land plants comes from microscopic dispersed spores. These microfossils are abundant and widely distributed in sediments, and the earliest generally accepted reports are from rocks of mid-Ordovician age (Llanvirn, 475 million years ago). Although distribution, morphology and ultrastructure of the spores indicate that they are derived from terrestrial plants, possibly early relatives of the bryophytes, this interpretation remains controversial as there is little in the way of direct evidence for the parent plants. An additional complicating factor is that there is a significant hiatus between the appearance of the first dispersed spores and fossils of relatively complete land plants (megafossils): spores predate the earliest megafossils (Late Silurian, 425 million year ago) by some 50 million years. Here we report the description of spore-containing plant fragments from Ordovician rocks of Oman. These fossils provide direct evidence for the nature of the spore-producing plants. They confirm that the earliest spores developed in large numbers within sporangia, providing strong evidence that they are the fossilized remains of bona fide land plants. Furthermore, analysis of spore wall ultrastructure supports liverwort affinities

    The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937) ‘On the plant-remains from the Downtonian of England and Wales'

    Get PDF
    © 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. The file attached is the published version of the article

    Spiral vortices traveling between two rotating defects in the Taylor-Couette system

    Full text link
    Numerical calculations of vortex flows in Taylor-Couette systems with counter rotating cylinders are presented. The full, time dependent Navier-Stokes equations are solved with a combination of a finite difference and a Galerkin method. Annular gaps of radius ratio η=0.5\eta=0.5 and of several heights are simulated. They are closed by nonrotating lids that produce localized Ekman vortices in their vicinity and that prevent axial phase propagation of spiral vortices. Existence and spatio temporal properties of rotating defects, of modulated Ekman vortices, and of the spiral vortex structures in the bulk are elucidated in quantitative detail.Comment: 9 pages, 9 figure

    Considerations on Neuberger's operator

    Get PDF
    We discuss new approaches to the numerical implementation of Neuberger's operator for lattice fermions and the possible use of block spin transformations.Comment: LATTICE 99 (Improvement and Renormalization

    Quantum Measurement and the Aharonov-Bohm Effect with Superposed Magnetic Fluxes

    Full text link
    We consider the magnetic flux in a quantum mechanical superposition of two values and find that the Aharonov-Bohm effect interference pattern contains information about the nature of the superposition, allowing information about the state of the flux to be extracted without disturbance. The information is obtained without transfer of energy or momentum and by accumulated nonlocal interactions of the vector potential A\vec{A} with many charged particles forming the interference pattern, rather than with a single particle. We suggest an experimental test using already experimentally realized superposed currents in a superconducting ring and discuss broader implications.Comment: 6 pages, 4 figures; Changes from version 3: corrected typo (not present in versions 1 and 2) in Eq. 8; Changes from version 2: shortened abstract; added refs and material in Section IV. The final publication is available at: http://link.springer.com/article/10.1007/s11128-013-0652-

    Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis

    Get PDF
    Natronomonas pharaonis is an archaeon adapted to two extreme conditions: high salt concentration and alkaline pH. It has become one of the model organisms for the study of extremophilic life. Here, we present a genome-scale, manually curated metabolic reconstruction for the microorganism. The reconstruction itself represents a knowledge base of the haloalkaliphile's metabolism and, as such, would greatly assist further investigations on archaeal pathways. In addition, we experimentally determined several parameters relevant to growth, including a characterization of the biomass composition and a quantification of carbon and oxygen consumption. Using the metabolic reconstruction and the experimental data, we formulated a constraints-based model which we used to analyze the behavior of the archaeon when grown on a single carbon source. Results of the analysis include the finding that Natronomonas pharaonis, when grown aerobically on acetate, uses a carbon to oxygen consumption ratio that is theoretically near-optimal with respect to growth and energy production. This supports the hypothesis that, under simple conditions, the microorganism optimizes its metabolism with respect to the two objectives. We also found that the archaeon has a very low carbon efficiency of only about 35%. This inefficiency is probably due to a very low P/O ratio as well as to the other difficulties posed by its extreme environment

    Resonance as the Mechanism of Daytime Periodic Breathing in Patients with Heart Failure

    Get PDF
    Rationale: In patients with chronic heart failure, daytime oscillatory breathing at rest is associated with a high risk of mortality. Experimental evidence, including exaggerated ventilatory responses to CO2 and prolonged circulation time, implicates the ventilatory control system and suggests feedback instability (loop gain > 1) is responsible. However, daytime oscillatory patterns often appear remarkably irregular versus classic instability (Cheyne-Stokes respiration), suggesting our mechanistic understanding is limited. Objectives: We propose that daytime ventilatory oscillations generally result from a chemoreflex resonance, in which spontaneous biological variations in ventilatory drive repeatedly induce temporary and irregular ringing effects. Importantly, the ease with which spontaneous biological variations induce irregular oscillations (resonance “strength”) rises profoundly as loop gain rises toward 1. We tested this hypothesis through a comparison of mathematical predictions against actual measurements in patients with heart failure and healthy control subjects. Methods: In 25 patients with chronic heart failure and 25 control subjects, we examined spontaneous oscillations in ventilation and separately quantified loop gain using dynamic inspired CO2 stimulation. Measurements and Main Results: Resonance was detected in 24 of 25 patients with heart failure and 18 of 25 control subjects. With increased loop gain—consequent to increased chemosensitivity and delay—the strength of spontaneous oscillations increased precipitously as predicted (r = 0.88), yielding larger (r = 0.78) and more regular (interpeak interval SD, r = −0.68) oscillations (P < 0.001 for all, both groups combined). Conclusions: Our study elucidates the mechanism underlying daytime ventilatory oscillations in heart failure and provides a means to measure and interpret these oscillations to reveal the underlying chemoreflex hypersensitivity and reduced stability that foretells mortality in this population
    corecore