29,269 research outputs found

    Transonic stability and control characteristics of a 0.015 scale model 69-0 of the space shuttle orbiter with forebody RSI modification in the NASA/LaRC 8 foot TPT (LA72)

    Get PDF
    Tests were conducted in the NASA/LaRC 8 foot transonic wind tunnel from March 26 through 31, 1976. The model was a 0.015 scale SSV Orbiter with forebody modifications to simulate slight reductions in the reusable surface insulation (RSI) thickness. Six component aerodynamic force and moment data were obtained at Mach numbers from 0.35 to 1.20 over an angle of attack range from -2 deg to 20 deg at sideslip angles of 0 deg and 5 deg

    Predictions of entry heating for lower surface of shuttle orbiter

    Get PDF
    A broad base of thermocouple and phase change paint data was assembled and correlated to the nominal design 14414.1 and proposed STS-1 (first flight of the space transportation system) entry trajectories. Averaged data from phase change paint tests compared favorably with thermocouple data for predicting heating rates. Laminar and turbulent radiation equilibrium heating rates were computed on the lower surface of the Shuttle orbiter for both trajectories, and the lower surface center line results were compared both with aerodynamic heating design data and with flight values from the STS-1 and STS-2 trajectories. The peak laminar heating values from the aerodynamic heating design data book were generally 40 to 60 percent higher than the laminar estimates of this study, except at the 55 percent location of maximum span where the design data book values were less than 10 percent higher. Estimates of both laminar and turbulent heating rates compared favorably with flight data

    Cross-sectional and plan-view cathodoluminescence of GaN partially coalesced above a nanocolumn array

    Get PDF
    The optical properties of GaN layers coalesced above an array of nanocolumns have important consequences for advanced optoelectronic devices. GaN nanocolumns coalesced using a nanoscale epitaxial overgrowth technique have been investigated by high resolution cathodoluminescence (CL) hyperspectral imaging. Plan-view microscopy reveals partially coalesced GaN layers with a sub-μm scale domain structure and distinct grain boundaries, which is mapped using CL spectroscopy showing high strain at the grain boundaries. Cross-sectional areas spanning the partially coalesced GaN and underlying nanocolumns are mapped using CL, revealing that the GaN bandedge peak shifts by about 25 meV across the partially coalesced layer of ∼2 μm thick. The GaN above the nanocolumns remains under tensile strain, probably due to Si out-diffusion from the mask or substrate. The cross-sectional data show how this strain is reduced towards the surface of the partially coalesced layer, possibly due to misalignment between adjacent partially coalesced regions

    Mechanism of enhanced light output in InGaN-based microlight emitting diodes

    Get PDF
    Micro-light emitting diode (LED) arrays with diameters of 4 to 20 mum have been fabricated and were found to be much more efficient light emitters compared to their broad-area counterparts, with up to five times enhancement in optical power densities. The possible mechanisms responsible for the improvement in performance were investigated. Strain relaxation in the microstructures as measured by Raman spectroscopy was not observed, arguing against theories of an increase in internal quantum efficiency due to a reduction of the piezoelectric field put forward by other groups. Optical microscope images show intense light emission at the periphery of the devices, as a result of light scattering off the etched sidewalls. This increases the extraction efficiency relative to broad area devices and boosts the forward optical output. In addition, spectra of the forward emitted light reveal the presence of resonant cavity modes [whispering gallery (WG) modes in particular] which appear to play a role in enhancing the optical output

    Topological Phases in Neuberger-Dirac operator

    Full text link
    The response of the Neuberger-Dirac fermion operator D=\Id + V in the topologically nontrivial background gauge field depends on the negative mass parameter m0m_0 in the Wilson-Dirac fermion operator DwD_w which enters DD through the unitary operator V=Dw(Dw†Dw)−1/2V = D_w (D_w^{\dagger} D_w)^{-1/2}. We classify the topological phases of DD by comparing its index to the topological charge of the smooth background gauge field. An exact discrete symmetry in the topological phase diagram is proved for any gauge configurations. A formula for the index of D in each topological phase is derived by obtaining the total chiral charge of the zero modes in the exact solution of the free fermion propagator.Comment: 27 pages, Latex, 3 figures, appendix A has been revise

    The nucleon to Delta electromagnetic transition form factors in lattice QCD

    Full text link
    The electromagnetic nucleon to Delta transition form factors are evaluated using two degenerate flavors of dynamical Wilson fermions and using dynamical sea staggered fermions with domain wall valence quarks. The two subdominant quadrupole form factors are evaluated for the first time in full QCD to sufficient accuracy to exclude a zero value, which is taken as a signal for deformation in the nucleon-Delta system. For the Coulomb quadrupole form factor the unquenched results show deviations from the quenched results at low q^2 bringing dynamical lattice results closer to experiment, thereby confirming the importance of pion cloud contributions on this quantity.Comment: 15 pages, 8 Figure

    Turbulent transport measurements with a laser Doppler velocimeter

    Get PDF
    The power spectrum of phototube current from a laser Doppler velocimeter operating in the heterodyne mode has been computed. The spectrum is obtained in terms of the space time correlation function of the fluid. The spectral width and shape predicted by the theory are in agreement with experiment. For normal operating parameters the time average spectrum contains information only for times shorter than the Lagrangian integral time scale of the turbulence. To examine the long time behavior, one must use either extremely small scattering angles, much longer wavelength radiation or a different mode of signal analysis, e.g., FM detection

    A Quantitative Non-radial Oscillation Model for the Subpulses in PSR B0943+10

    Get PDF
    In this paper, we analyze time series measurements of PSR B0943+10 and fit them with a non-radial oscillation model. The model we apply was first developed for total intensity measurements in an earlier paper, and expanded to encompass linear polarization in a companion paper to this one. We use PSR B0943+10 for the initial tests of our model because it has a simple geometry, it has been exhaustively studied in the literature, and its behavior is well-documented. As prelude to quantitative fitting, we have reanalyzed previously published archival data of PSR B0943+10 and uncovered subtle but significant behavior that is difficult to explain in the framework of the drifting spark model. Our fits of a non-radial oscillation model are able to successfully reproduce the observed behavior in this pulsar.Comment: 45 pages, 16 figures, accepted Ap

    Position determination of a lander and rover at Mars with Earth-based differential tracking

    Get PDF
    The presence of two or more landed or orbiting spacecraft at a planet provides the opportunity to perform extremely accurate Earth-based navigation by simultaneously acquiring Doppler data and either Same-Beam Interferometry (SBI) or ranging data. Covariance analyses were performed to investigate the accuracy with which lander and rover positions on the surface of Mars can be determined. Simultaneous acquisition of Doppler and ranging data from a lander and rover over two or more days enables determination of all components of their relative position to under 20 m. Acquiring one hour of Doppler and SBI enables three dimensional lander-rover relative position determination to better than 5 m. Twelve hours of Doppler and either SBI or ranging from a lander and a low circular or half synchronous circular Mars orbiter makes possible lander absolute position determination to tens of meters
    • …
    corecore