2,703 research outputs found

    Targeted treatment of recurrent platinum-resistant ovarian cancer: Current and emerging therapies

    Get PDF
    With advances in surgical techniques and chemotherapeutic agents, mortality rates from epithelial ovarian cancer (EOC) have slightly decreased over the last 30 years. However, EOC still ranks as the most deadly gynecologic cancer with an overall 5-year survival rate of 45%. Prognosis is especially disappointing for women with platinum-resistant disease, where 80% of patients will fail to respond to available therapies. Emerging treatment strategies have subsequently focused on targets which are integral to tumor growth and metastasis. In this review, we will focus on those innovative agents currently under investigation in clinical trials. © 2011 Mantia-Smaldone et al, publisher and licensee Dove Medical Press Ltd

    Mechanism-based model characterizing bidirectional interaction between PEGylated liposomal CKD-602 (S-CKD602) and monocytes in cancer patients

    Get PDF
    S-CKD602 is a PEGylated liposomal formulation of CKD-602, a potent topoisomerase I inhibitor. The objective of this study was to characterize the bidirectional pharmacokinetic-pharmacodynamic (PK-PD) interaction between S-CKD602 and monocytes. Plasma concentrations of encapsulated CKD-602 and monocytes counts from 45 patients with solid tumors were collected following intravenous administration of S-CKD602 in the phase I study. The PK-PD models were developed and fit simultaneously to the PK-PD data, using NONMEM®. The monocytopenia after administration of S-CKD602 was described by direct toxicity to monocytes in a mechanism-based model, and by direct toxicity to progenitor cells in bone marrow in a myelosuppression-based model. The nonlinear PK disposition of S-CKD602 was described by linear degradation and irreversible binding to monocytes in the mechanism-based model, and Michaelis-Menten kinetics in the myelosuppression-based model. The mechanism-based PK-PD model characterized the nonlinear PK disposition, and the bidirectional PK-PD interaction between S-CKD602 and monocytes. © 2012 Cárdenas et al, publisher and licensee Dove Medical Press Ltd

    MUC1 positive, Kras and Pten driven mouse gynecologic tumors replicate human tumors and vary in survival and nuclear grade based on anatomical location

    Get PDF
    Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP) mice with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding adenovirus (AdCre) in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal, and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract (ovaries, oviducts, and uterus). Tumors showed increased expression of MUC1 glycoprotein and triggered de novo antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower than for endometrial tumors (p = 0.0015), yet similar to survival for ovarian cancer. Oviducts seem to favor the development of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating site for high grade human ovarian tumors. © 2014 Tirodkar et al

    Influence of temperature on prevalence of health and welfare conditions in pigs: time-series analysis of pig abattoir inspection data in England and Wales

    Get PDF
    The prevalence of many diseases in pigs displays seasonal distributions. Despite growing concerns about the impacts of climate change, we do not yet have a good understanding of the role that weather factors play in explaining such seasonal patterns. In this study, national and county-level aggregated abattoir inspection data were assessed for England and Wales during 2010–2015. Seasonally-adjusted relationships were characterised between weekly ambient maximum temperature and the prevalence of both respiratory conditions and tail biting detected at slaughter. The prevalence of respiratory conditions showed cyclical annual patterns with peaks in the summer months and troughs in the winter months each year. However, there were no obvious associations with either high or low temperatures. The prevalence of tail biting generally increased as temperatures decreased, but associations were not supported by statistical evidence: across all counties there was a relative risk of 1.028 (95% CI 0.776–1.363) for every 1 °C fall in temperature. Whilst the seasonal patterns observed in this study are similar to those reported in previous studies, the lack of statistical evidence for an explicit association with ambient temperature may possibly be explained by the lack of information on date of disease onset. There is also the possibility that other time-varying factors not investigated here may be driving some of the seasonal patterns

    Evaluation of absorbent materials for use as ad hoc dry decontaminants during mass casualty incidents as part of the UK’s Initial Operational Response (IOR)

    Get PDF
    Copyright: © 2017 Kassouf et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The UK's Initial Operational Response (IOR) is a revised process for the medical management of mass casualties potentially contaminated with hazardous materials. A critical element of the IOR is the introduction of immediate, on-scene disrobing and decontamination of casualties to limit the adverse health effects of exposure. Ad hoc cleansing of the skin with dry absorbent materials has previously been identified as a potential means of facilitating emergency decontamination. The purpose of this study was to evaluate the in vitro oil and water absorbency of a range of materials commonly found in the domestic and clinical environments and to determine the effectiveness of a small, but representative selection of such materials in skin decontamination, using an established ex vivo model. Five contaminants were used in the study: methyl salicylate, parathion, diethyl malonate, phorate and potassium cyanide. In vitro measurements of water and oil absorbency did not correlate with ex vivo measurements of skin decontamination. When measured ex vivo, dry decontamination was consistently more effective than a standard wet decontamination method ("rinse-wipe-rinse") for removing liquid contaminants. However, dry decontamination was ineffective against particulate contamination. Collectively, these data confirm that absorbent materials such as wound dressings and tissue paper provide an effective, generic capability for emergency removal of liquid contaminants from the skin surface, but that wet decontamination should be used for non-liquid contaminants.Peer reviewedFinal Published versio

    Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    Get PDF
    Quantum ground-state problems are computationally hard problems; for general many-body Hamiltonians, there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wavefunctions than classical computers.Comment: 11 pages, 13 figure

    Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium

    Get PDF
    BACKGROUND: Exacerbations of asthma and COPD are triggered by rhinoviruses. Uncontrolled inflammatory pathways, pathogenic bacterial burden and impaired antiviral immunity are thought to be important factors in disease severity and duration. Macrolides including azithromycin are often used to treat the above diseases, but exhibit variable levels of efficacy. Inhaled corticosteroids are also readily used in treatment, but may lack specificity. Ideally, new treatment alternatives should suppress unwanted inflammation, but spare beneficial antiviral immunity. METHODS: In the present study, we screened 225 novel macrolides and tested them for enhanced antiviral activity against rhinovirus, as well as anti-inflammatory activity and activity against Gram-positive and Gram-negative bacteria. Primary bronchial epithelial cells were grown from 10 asthmatic individuals and the effects of macrolides on rhinovirus replication were also examined. Another 30 structurally similar macrolides were also examined. RESULTS: The oleandomycin derivative Mac5, compared with azithromycin, showed superior induction (up to 5-fold, EC50 = 5-11 μM) of rhinovirus-induced type I IFNβ, type III IFNλ1 and type III IFNλ2/3 mRNA and the IFN-stimulated genes viperin and MxA, yet had no effect on IL-6 and IL-8 mRNA. Mac5 also suppressed rhinovirus replication at 48 h, proving antiviral activity. Mac5 showed antibacterial activity against Gram-positive Streptococcus pneumoniae; however, it did not have any antibacterial properties compared with azithromycin when used against Gram-negative Escherichia coli (as a model organism) and also the respiratory pathogens Pseudomonas aeruginosa and non-typeable Haemophilus influenzae. Further non-toxic Mac5 derivatives were identified with various anti-inflammatory, antiviral and antibacterial activities. CONCLUSIONS: The data support the idea that macrolides have antiviral properties through a mechanism that is yet to be ascertained. We also provide evidence that macrolides can be developed with anti-inflammatory, antibacterial and antiviral activity and show surprising versatility depending on the clinical need

    Reverse Myocardial Remodeling Following Valve Repair in Patients With Chronic Severe Primary Degenerative Mitral Regurgitation

    Get PDF
    OBJECTIVES: The aims of this study were to quantify preoperative myocardial fibrosis using late gadolinium enhancement (LGE), extracellular volume fraction (ECV%), and indexed extracellular volume (iECV) on cardiac magnetic resonance; determine whether this varies following surgery; and examine the impact on postoperative outcomes. BACKGROUND: Myocardial fibrosis complicates chronic severe primary mitral regurgitation and is associated with left ventricular dilatation and dysfunction. It is not known if this nonischemic fibrosis is reversible following surgery or if it affects ventricular remodeling and patient outcomes. METHODS: A multicenter prospective study was conducted among 104 subjects with primary mitral regurgitation undergoing mitral valve repair. Cardiac magnetic resonance and cardiopulmonary exercise stress testing were performed preoperatively and ≥6 months after surgery. Symptoms were assessed using the Minnesota Living With Heart Failure Questionnaire. RESULTS: Mitral valve repair was performed for Class 2a indications in 65 patients and Class 1 indications in 39 patients. Ninety-three patients were followed up at 8.8 months (interquartile range: 7.4 months-10.6 months). Following surgery, there were significant reductions in both ECV% (from 27.4% to 26.6%; P = 0.027) and iECV (from 17.9 to 15.4 mL/m2; P < 0.001), but the incidence of LGE was unchanged. Neither preoperative ECV% nor LGE affected postoperative function, but iECV predicted left ventricular end-systolic volume index (β = 1.04; 95% CI: 0.49 to 1.58; P < 0.001) and left ventricular ejection fraction (β = -0.61; 95% CI: -1.05 to -0.18; P = 0.006). Patients with above-median iECV of ≥17.6 mL/m2 had significantly larger postoperative values of left ventricular end-systolic volume index (30.5 ± 12.7 mL/m2 vs 23.9 ± 8.0 mL/m2; P = 0.003), an association that remained significant in subcohort analyses of patients in New York Heart Association functional class I. CONCLUSIONS: Mitral valve surgery results in reductions in ECV% and iECV, which are surrogates of diffuse myocardial fibrosis, and preoperative iECV predicts the degree of postoperative remodeling irrespective of symptoms. (The Role of Myocardial Fibrosis in Degenerative Mitral Regurgitation; NCT02355418)
    corecore