2,162 research outputs found
Celebrating Stanley Lubman
On April 15, 2005 more than sixty scholars from China, North America, and Europe gathered at Columbia Law School for a conference in honor of Stanley Lubman. The conference celebrated Stanley\u27s seventieth year-and more importantly, his tremendous contribution to the field of Chinese legal studies. This special edition of the Columbia Journal of Asian Law includes a selection from the twenty papers presented at the conference
Recommended from our members
Introduction: Celebrating Stanley Lubman
On April 15, 2005 more than sixty scholars from China, North America, and Europe gathered at Columbia Law School for a conference in honor of Stanley Lubman. The conference celebrated Stanley's seventieth year-and more importantly, his tremendous contribution to the field of Chinese legal studies. Stanley Lubman is one of a handful of 20th century Americans who pioneered the study of Chinese law. Stanley has had impact on the Chinese law field in numerous ways. He has taught Chinese law at most leading law schools in the U.S.-including at Boalt Hall, Yale, Harvard, Columbia, and Stanford. While teaching, he has produced scholarship of great breadth, including on topics such as dispute resolution, administrative law, and American policy toward China. In addition to his own scholarship, he has been a major force in encouraging scholarship on Chinese law by others, primarily through organizing a number of important conferences and editing collections of key articles on Chinese law. Stanley also played a vital role in helping to foster legal exchanges between China and the United States. More recently, Stanley has played a more direct role in legal reform and development in China. Finally, he was one of the first American lawyers to establish a practice related to China
Mapping Theoretical and Methodological Perspectives for Understanding Speech Interface Interactions
CHI 2019: The ACM CHI Conference on Human Factors in Computing Systems - Weaving the Threads of CHI, Glasgow, United Kingdom, 4-9 May 2019The use of speech as an interaction modality has grown considerably through the integration of Intelligent Personal Assistants (IPAs- e.g. Siri, Google Assistant) into smartphones and voice based devices (e.g. Amazon Echo). However, there remain significant gaps in using theoretical frameworks to understand user behaviours and choices and how they may applied to specific speech interface interactions. This part-day multidisciplinary workshop aims to critically map out and evaluate the- oretical frameworks and methodological approaches across a number of disciplines and establish directions for new paradigms in understanding speech interface user behaviour. In doing so, we will bring together participants from HCI and other speech related domains to establish a cohesive, diverse and collaborative community of researchers from academia and industry with interest in exploring theoretical and methodological issues in the field.Irish Research Counci
Recommended from our members
Insights on lava–ice/snow interactions from large-scale basaltic melt experiments
Quantitative measurements of interactions between lava and ice/snow are critical for improving our knowledge of glaciovolcanic hazards and our ability to use glaciovolcanic deposits for paleoclimate reconstructions. However, such measurements are rare because the eruptions tend to be dangerous and not easily accessible. To address these difficulties, we conducted a series of pilot experiments designed to allow close observation, measurements, and textural documentation of interactions between basaltic melt and ice. Here we report the results of the first experiments, which comprised controlled pours of as much as 300 kg of basaltic melt on top of ice. Our experiments provide new insights on (1) estimates for rates of heat transfer through boundary layers and for ice melting; (2) controls on rates of lava advance over ice/snow; (3) formation of lava bubbles (i.e., Limu o Pele) by steam from vaporization of underlying ice or water; and (4) the role of within-ice discontinuities to facilitate lava migration beneath and within ice. The results of our experiments confirm field observations about the rates at which lava can melt snow/ice, the efficacy with which a boundary layer can slow melting rates, and morphologies and textures indicative of direct lava-ice interaction. They also demonstrate that ingestion of external water by lava can create surface bubbles (i.e., Limu) and large gas cavities. We propose that boundary layer steam can slow heat transfer from lava to ice, and present evidence for rapid isotopic exchange between water vapor and melt. We also suggest new criteria for identifying ice-contact features in terrestrial and martian lava flows
Time-series analysis of two hydrothermal plumes at 9°50′N East Pacific Rise reveals distinct, heterogeneous bacterial populations
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geobiology 10 (2012): 178-192, doi:10.1111/j.1472-4669.2011.00315.xWe deployed sediment traps adjacent to two active hydrothermal vents at 9°50’N on the
East Pacific Rise (EPR) to assess variability in bacterial community structure associated with
plume particles on the time scale of weeks to months, to determine if an endemic population of
plume microbes exists, and to establish ecological relationships between bacterial populations
and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated there are
separate communities at the two different vents and temporal community variations between
each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, 232Th, and Ti as well as fine-grained
particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca and Co are reflected in shifts in microbial
populations. 16S rRNA clone libraries from each trap at three time points revealed a high
percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift
towards the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many
of whom likely participate in Fe and S cycling. The particle attached plume environment is
genetically distinct from the surrounding seawater. While work to date in hydrothermal
environments has focused on determining the microbial communities on hydrothermal chimneys
and the basaltic lavas that form the surrounding seafloor, little comparable data exists on the
plume environment that physically and chemically connects them. By employing sediment traps
for a time series approach to sampling, we show that bacterial community composition on plume
particles changes on time scales much shorter than previously known.This work was supported by the NSF Marine
Geology and Geophysics program, the Science and Technology program, and the Gordon and
Betty Moore Foundation
Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru
Accurate quantification of rates of glacier mass loss is critical for managing water resources and for assessing hazards at ice-clad volcanoes, especially in arid regions like southern Peru. In these regions, glacier and snow melt are crucial dry season water resources. In order to verify previously reported rates of ice area decline at Nevado Coropuna in Peru, which are anomalously rapid for tropical glaciers, we measured changes in ice cap area using 259 Landsat images acquired from 1980 to 2014. We find that Coropuna Ice Cap is presently the most extensive ice mass in the tropics, with an area of 44.1 km2, and has been shrinking at an average area loss rate of 0.409 km2 a−1 (~0.71% a−1) since 1980. Our estimated rate of change is considerably lower than previous studies (1.4 km2 a−1 or ~2.43% a−1), but is consistent with other tropical regions, such as the Cordillera Blanca located ~850 km to the NW (~0.68% a−1). Thus, if glacier recession continues at its present rate, our results suggest that Coropuna Ice Cap will likely continue to contribute to water supply for agricultural and domestic uses until ~2120, which is nearly 100 years longer than previously predicted
- …