24,457 research outputs found
Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system
An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented
Numerical Studies of the Compressible Ising Spin Glass
We study a two-dimensional compressible Ising spin glass at constant volume.
The spin interactions are coupled to the distance between neighboring particles
in the Edwards-Anderson model with +/- J interactions. We find that the energy
of a given spin configuration is shifted from its incompressible value, E_0, by
an amount quadratic in E_0 and proportional to the coupling strength. We then
construct a simple model expressed only in terms of spin variables that
predicts the existence of a critical value of the coupling above which the
spin-glass transition disappears.Comment: REVTeX, 4 pages, 4 figures. Submitted to Phys. Rev. Let
Local Spin-Gauge Symmetry of the Bose-Einstein Condensates in Atomic Gases
The Bose-Einstein condensates of alkali atomic gases are spinor fields with
local ``spin-gauge" symmetry. This symmetry is manifested by a superfluid
velocity (or gauge field) generated by the Berry phase of the
spin field. In ``static" traps, splits the degeneracy of the
harmonic energy levels, breaks the inversion symmetry of the vortex nucleation
frequency , and can lead to {\em vortex ground states}. The
inversion symmetry of , however, is not broken in ``dynamic"
traps. Rotations of the atom cloud can be generated by adiabatic effects
without physically rotating the entire trap.Comment: Typos in the previous version corrected, thanks to the careful
reading of Daniel L. Cox. 13 pages + 2 Figures in uuencode + gzip for
Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions
We present high statistics results for the structure of the nucleon from a
mixed-action calculation using 2+1 flavors of asqtad sea and domain wall
valence fermions. We perform extrapolations of our data based on different
chiral effective field theory schemes and compare our results with available
information from phenomenology. We discuss vector and axial form factors of the
nucleon, moments of generalized parton distributions, including moments of
forward parton distributions, and implications for the decomposition of the
nucleon spin.Comment: 68 pages, 47 figures. Main revision points: improved discussion of
chiral fits and systematic uncertainties, several minor refinements. Accepted
for publication in Phys.Rev.
Force distributions in a triangular lattice of rigid bars
We study the uniformly weighted ensemble of force balanced configurations on
a triangular network of nontensile contact forces. For periodic boundary
conditions corresponding to isotropic compressive stress, we find that the
probability distribution for single-contact forces decays faster than
exponentially. This super-exponential decay persists in lattices diluted to the
rigidity percolation threshold. On the other hand, for anisotropic imposed
stresses, a broader tail emerges in the force distribution, becoming a pure
exponential in the limit of infinite lattice size and infinitely strong
anisotropy.Comment: 11 pages, 17 figures Minor text revisions; added references and
acknowledgmen
Nonlinear Competition Between Small and Large Hexagonal Patterns
Recent experiments by Kudrolli, Pier and Gollub on surface waves,
parametrically excited by two-frequency forcing, show a transition from a small
hexagonal standing wave pattern to a triangular ``superlattice'' pattern. We
show that generically the hexagons and the superlattice wave patterns bifurcate
simultaneously from the flat surface state as the forcing amplitude is
increased, and that the experimentally-observed transition can be described by
considering a low-dimensional bifurcation problem. A number of predictions come
out of this general analysis.Comment: 4 pages, RevTex, revised, to appear in Phys. Rev. Let
An analytical stability theory for Faraday waves and the observation of the harmonic surface response
We present an analytical stability theory for the onset of the Faraday
instability, applying over a wide frequency range between shallow water gravity
and deep water capillary waves. For sufficiently thin fluid layers the surface
is predicted to occur in harmonic rather than subharmonic resonance with the
forcing. An experimental confirmation of this result is given. PACS: 47.20.Ma,
47.20.Gv, 47.15.CbComment: 10 pages (LaTeX-file), 3 figures (Postscript) Submitted for
publicatio
Anomalous diffusion in polymers: long-time behaviour
We study the Dirichlet boundary value problem for viscoelastic diffusion in
polymers. We show that its weak solutions generate a dissipative semiflow. We
construct the minimal trajectory attractor and the global attractor for this
problem.Comment: 13 page
Nucleon, and excited states in lattice QCD
The energies of the excited states of the Nucleon, and are
computed in lattice QCD, using two light quarks and one strange quark on
anisotropic lattices. The calculation is performed at three values of the light
quark mass, corresponding to pion masses = 392(4), 438(3) and 521(3)
MeV. We employ the variational method with a large basis of interpolating
operators enabling six energies in each irreducible representation of the
lattice to be distinguished clearly. We compare our calculation with the
low-lying experimental spectrum, with which we find reasonable agreement in the
pattern of states. The need to include operators that couple to the expected
multi-hadron states in the spectrum is clearly identified.Comment: Revised for publication. References added, Table VI expanded to add
strange baryon multiparticle thresholds and multiparticle thresholds added to
Figs. 4, 5 and 6. 15 pages, 6 figure
- …