1,154 research outputs found
Uncertainty Analyses in the Finite-Difference Time-Domain Method
Providing estimates of the uncertainty in results obtained by Computational Electromagnetic (CEM) simulations is essential when determining the acceptability of the results. The Monte Carlo method (MCM) has been previously used to quantify the uncertainty in CEM simulations. Other computationally efficient methods have been investigated more recently, such as the polynomial chaos method (PCM) and the method of moments (MoM). This paper introduces a novel implementation of the PCM and the MoM into the finite-difference time -domain method. The PCM and the MoM are found to be computationally more efficient than the MCM, but can provide poorer estimates of the uncertainty in resonant electromagnetic compatibility data
Application of the European Regional Seas Ecosystem Model (ERSEM) to assessing the eutrophication status in the OSPAR Maritime Area, with particular reference to nutrient discharges from Scottish salmonid aquaculture
Aquaculture production of salmonids in Scotland has grown over the last 15 years, exceeded 150,000 tonnes in 2001. There have been conflicting views as to the likely ecological impact of nutrient discharges from this activity. Whilst quantitative assessments of aquaculture nutrient discharges have been carried out, the debate regarding possible eutrophication impacts of these discharges has so far been largely speculative. In order to provide a quantitative basis for this discussion, a marine ecosystem model was used to simulate the consequences of a 50% reduction in aquaculture nutrient discharges, and the results are presented here
Modelling the behaviour of nutrients in the coastal waters of Scotland
The overall goal of this project was to provide Scotland with a strategic ecosystem simulation tool for identifying maritime areas which could be at risk of eutrophication. The tool should provide spatially resolved output, and be capable of discriminating between different types and locations of nutrient inputs, so as to enable scenario analyses of different reduction options. The specific aims of the project were firstly to simulate the annual cycles of nutrients and ecological properties of Scottish waters and advise on areas which might suffer from eutrophication, and secondly, to determine the contribution of Scottish nutrient discharges to eutrophication in the OSPAR maritime area as a whole
Modelling the behaviour of nutrients in the coastal waters of Scotland - an update on inputs from Scottish aquaculture and their impact on eutrophication status
A previous study estimated that salmon farming contributed approximately 6% of Scotland's nitrogen-nutrient input to coastal waters, and 13% of phosphorus (based on 2001 production figures). However, in some areas of the west of Scotland with small freshwater catchment areas and low levels of human habitation, aquaculture inputs represented greater than 80% of the total. In 2002, FRS published results from an ecosystem modelling study involving a collaboration with the Institute for Marine Research, University of Hamburg, and the Macaulay Land Use Research Institute in Aberdeen, to assess the eutrophication impact of various nutrient inputs to Scottish waters. The results suggested that a 50% reduction in aquaculture salmon production would have only a small impact on water quality which would be undetectable against the background of natural variability due to climate variations. Estimating aquaculture nutrient discharge is a difficult task. The 2002 study was based on data relating to the consented biomass of fish at farm sites in sea lochs. Since then, new data have become available on the actual harvest of fish at all sites in Scotland. In this report, we re-assess the salmon production in Scotland in 2001 and the consequent nutrient discharge, and repeat the ecosystem model runs to estimate the impact of reduction scenarios on eutrophication status. The new data indicate that the previous study had overestimated salmon production and nutrient discharge by approximately 18% Scotland wide. Production and discharge at Shetland and in the Southern Hebrides had been under-estimated, whilst that in the Minches had been over-estimated. New runs of the ecosystem model show that the original conclusions on eutrophication impact were sound. A scenario of 50% reduction in salmon production produced regional changes in water quality which were less than 25% of the natural variability due to climate. New runs simulating a cessation of aquaculture showed that even this extreme reduction scenario produced changes in water quality that were less than half the natural variability
Boson induced s-wave pairing in dilute boson-fermion mixtures
We show that in dilute boson-fermion mixtures with fermions in two internal
states, even when the bare fermion-fermion interaction is repulsive, the
exchange of density fluctuations of the Bose condensate may lead to an
effective fermion-fermion attraction, and thus to a Cooper instability in the
s-wave channel. We give an analytical method to derive the associated in
the limit where the phonon branch of the Bogoliubov excitation spectrum of the
bosons is important. We find a of the same order as for a pure Fermi gas
with bare attraction.Comment: 12 pages, no figure
Parametrically Excited Surface Waves: Two-Frequency Forcing, Normal Form Symmetries, and Pattern Selection
Motivated by experimental observations of exotic standing wave patterns in
the two-frequency Faraday experiment, we investigate the role of normal form
symmetries in the pattern selection problem. With forcing frequency components
in ratio m/n, where m and n are co-prime integers, there is the possibility
that both harmonic and subharmonic waves may lose stability simultaneously,
each with a different wavenumber. We focus on this situation and compare the
case where the harmonic waves have a longer wavelength than the subharmonic
waves with the case where the harmonic waves have a shorter wavelength. We show
that in the former case a normal form transformation can be used to remove all
quadratic terms from the amplitude equations governing the relevant resonant
triad interactions. Thus the role of resonant triads in the pattern selection
problem is greatly diminished in this situation. We verify our general results
within the example of one-dimensional surface wave solutions of the
Zhang-Vinals model of the two-frequency Faraday problem. In one-dimension, a
1:2 spatial resonance takes the place of a resonant triad in our investigation.
We find that when the bifurcating modes are in this spatial resonance, it
dramatically effects the bifurcation to subharmonic waves in the case of
forcing frequencies are in ratio 1/2; this is consistent with the results of
Zhang and Vinals. In sharp contrast, we find that when the forcing frequencies
are in ratio 2/3, the bifurcation to (sub)harmonic waves is insensitive to the
presence of another spatially-resonant bifurcating mode.Comment: 22 pages, 6 figures, late
On the chirality of quark modes
A model for the QCD vacuum based on a domainlike structured background gluon
field with definite duality attributed to the domains has been shown elsewhere
to give confinement of static quarks, a reasonable value for the topological
susceptibility and indications that chiral symmetry is spontaneously broken. In
this paper we study in detail the eigenvalue problem for the Dirac operator in
such a gluon mean field. A study of the local chirality parameter shows that
the lowest nonzero eigenmodes possess a definite mean chirality correlated with
the duality of a given domain. A probability distribution of the local
chirality qualitatively reproduces histograms seen in lattice simulations.Comment: RevTeX4, 5 figures, 14 page
The Importance of Time Congruity in the Organisation.
In 1991 Kaufman, Lane, and Lindquist proposed that time congruity in terms of an individual's time preferences and the time use methods of an organisation would lead to satisfactory performance and enhancement of quality of work and general life. The research reported here presents a study which uses commensurate person and job measures of time personality in an organisational setting to assess the effects of time congruity on one aspect of work life, job-related affective well-being. Results show that time personality and time congruity were found to have direct effects on well-being and the influence of time congruity was found to be mediated through time personality, thus contributing to the person–job (P–J) fit literature which suggests that direct effects are often more important than indirect effects. The study also provides some practical examples of ways to address some of the previously cited methodological issues in P–J fit research
- …