162 research outputs found
Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures
We propose that retinal-based phototrophy arose early in the evolution of
life on Earth, profoundly impacting the development of photosynthesis and
creating implications for the search for life beyond our planet. While the
early evolutionary history of phototrophy is largely in the realm of the
unknown, the onset of oxygenic photosynthesis in primitive cyanobacteria
significantly altered the Earth's atmosphere by contributing to the rise of
oxygen ~2.3 billion years ago. However, photosynthetic chlorophyll and
bacteriochlorophyll pigments lack appreciable absorption at wavelengths about
500-600 nm, an energy-rich region of the solar spectrum. By contrast, simpler
retinal-based light-harvesting systems such as the haloarchaeal purple membrane
protein bacteriorhodopsin show a strong well-defined peak of absorbance
centered at 568 nm, which is complementary to that of chlorophyll pigments. We
propose a scenario where simple retinal-based light-harvesting systems like
that of the purple chromoprotein bacteriorhodopsin, originally discovered in
halophilic Archaea, may have dominated prior to the development of
photosynthesis. We explore this hypothesis, termed the 'Purple Earth,' and
discuss how retinal photopigments may serve as remote biosignatures for
exoplanet research.Comment: Published Open Access in the International Journal of Astrobiology;
10 pages, 6 figure
A Limited Habitable Zone for Complex Life
The habitable zone (HZ) is commonly defined as the range of distances from a
host star within which liquid water, a key requirement for life, may exist on a
planet's surface. Substantially more CO2 than present in Earth's modern
atmosphere is required to maintain clement temperatures for most of the HZ,
with several bars required at the outer edge. However, most complex aerobic
life on Earth is limited by CO2 concentrations of just fractions of a bar. At
the same time, most exoplanets in the traditional HZ reside in proximity to M
dwarfs, which are more numerous than Sun-like G dwarfs but are predicted to
promote greater abundances of gases that can be toxic in the atmospheres of
orbiting planets, such as carbon monoxide (CO). Here we show that the HZ for
complex aerobic life is likely limited relative to that for microbial life. We
use a 1D radiative-convective climate and photochemical models to circumscribe
a Habitable Zone for Complex Life (HZCL) based on known toxicity limits for a
range of organisms as a proof of concept. We find that for CO2 tolerances of
0.01, 0.1, and 1 bar, the HZCL is only 21%, 32%, and 50% as wide as the
conventional HZ for a Sun-like star, and that CO concentrations may limit some
complex life throughout the entire HZ of the coolest M dwarfs. These results
cast new light on the likely distribution of complex life in the universe and
have important ramifications for the search for exoplanet biosignatures and
technosignatures.Comment: Revised including additional discussion. Published Gold OA in ApJ. 9
pages, 5 figures, 5 table
Nonphotosynthetic Pigments as Potential Biosignatures
Previous work on possible surface reflectance biosignatures for Earth-like
planets has typically focused on analogues to spectral features produced by
photosynthetic organisms on Earth, such as the vegetation red edge. Although
oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is
the dominant metabolism on our planet, pigmentation has evolved for multiple
purposes to adapt organisms to their environment. We present an
interdisciplinary study of the diversity and detectability of nonphotosynthetic
pigments as biosignatures, which includes a description of environments that
host nonphotosynthetic biologically pigmented surfaces, and a lab-based
experimental analysis of the spectral and broadband color diversity of
pigmented organisms on Earth. We test the utility of broadband color to
distinguish between Earth-like planets with significant coverage of
nonphotosynthetic pigments and those with photosynthetic or nonbiological
surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given
sufficient surface coverage, nonphotosynthetic pigments could significantly
impact the disk-averaged spectrum of a planet. However, we find that due to the
possible diversity of organisms and environments, and the confounding effects
of the atmosphere and clouds, determination of substantial coverage by
biologically produced pigments would be difficult with broadband colors alone
and would likely require spectrally resolved data.Comment: 21 pages, 12 figures, 5 tables. Full, published articl
A Quarter-Century of Observations of Comet 10P/Tempel 2 at Lowell Observatory: Continued Spin-Down, Coma Morphology, Production Rates, and Numerical Modeling
We report on photometry and imaging of Comet 10P/Tempel 2 obtained at Lowell
Observatory from 1983 through 2011. We measured a nucleus rotation period of
8.950 +/- 0.002 hr from 2010 September to 2011 January. This rotation period is
longer than the period we previously measured in 1999, which was itself longer
than the period measured in 1988. A nearly linear jet was observed which varied
little during a rotation cycle in both R and CN images acquired during the 1999
and 2010 apparitions. We measured the projected direction of this jet
throughout the two apparitions and, under the assumption that the source region
of the jet was near the comet's pole, determined a rotational pole direction of
RA/Dec = 151deg/+59deg from CN measurements and RA/Dec = 173deg/+57deg from
dust measurements (we estimate a circular uncertainty of 3deg for CN and 4deg
for dust). Different combinations of effects likely bias both gas and dust
solutions and we elected to average these solutions for a final pole of RA/Dec
= 162 +/- 11deg/+58 +/- 1deg. Photoelectric photometry was acquired in 1983,
1988, 1999/2000, and 2010/2011. The activity exhibited a steep turn-on ~3
months prior to perihelion (the exact timing of which varies) and a relatively
smooth decline after perihelion. The activity during the 1999 and 2010
apparitions was similar; limited data in 1983 and 1988 were systematically
higher and the difference cannot be explained entirely by the smaller
perihelion distance. We measured a "typical" composition, in agreement with
previous investigators. Monte Carlo numerical modeling with our pole solution
best replicated the observed coma morphology for a source region located near a
comet latitude of +80deg and having a radius of ~10deg. Our model reproduced
the seasonal changes in activity, suggesting that the majority of Tempel 2's
activity originates from a small active region located near the pole.Comment: Accepted by AJ; 29 pages of text (preprint style), 8 tables, 7
figure
Earthshine as an Illumination Source at the Moon
Earthshine is the dominant source of natural illumination on the surface of
the Moon during lunar night, and at locations within permanently shadowed
regions that never receive direct sunlight. As such, earthshine may enable the
exploration of areas of the Moon that are hidden from solar illumination. The
heat flux from earthshine may also influence the transport and cold trapping of
volatiles present in the very coldest areas. In this study, Earth's spectral
radiance at the Moon is examined using a suite of Earth spectral models created
using the Virtual Planetary Laboratory (VPL) three dimensional modeling
capability. At the Moon, the broadband, hemispherical irradiance from Earth
near 0 phase is approximately 0.15 watts per square meter, with comparable
contributions from solar reflectance and thermal emission. Over the simulation
timeframe, spanning two lunations, Earth's thermal irradiance changes less than
a few mW per square meter as a result of cloud variability and the
south-to-north motion of sub-observer position. In solar band, Earth's
diurnally averaged light curve at phase angles < 60 degrees is well fit using a
Henyey Greenstein integral phase function. At wavelengths > 0.7 microns, near
the well known vegetation "red edge", Earth's reflected solar radiance shows
significant diurnal modulation as a result of the longitudinal asymmetry in
projected landmass, as well as from the distribution of clouds. A simple
formulation with adjustable coefficients is presented for estimating Earth's
hemispherical irradiance at the Moon as a function of wavelength, phase angle
and sub-observer coordinates. It is demonstrated that earthshine is
sufficiently bright to serve as a natural illumination source for optical
measurements from the lunar surface.Comment: 27 pages, 15 figures, 1 tabl
Photochemistry of Anoxic Abiotic Habitable Planet Atmospheres: Impact of New HO Cross-Sections
We present a study of the photochemistry of abiotic habitable planets with
anoxic CO-N atmospheres. Such worlds are representative of early Earth,
Mars and Venus, and analogous exoplanets. HO photodissociation controls the
atmospheric photochemistry of these worlds through production of reactive OH,
which dominates the removal of atmospheric trace gases. The near-UV (NUV;
nm) absorption cross-sections of HO play an outsized role in OH
production; these cross-sections were heretofore unmeasured at habitable
temperatures ( K). We present the first measurements of NUV HO
absorption at K, and show it to absorb orders of magnitude more than
previously assumed. To explore the implications of these new cross-sections, we
employ a photochemical model; we first intercompare it with two others and
resolve past literature disagreement. The enhanced OH production due to these
higher cross-sections leads to efficient recombination of CO and O,
suppressing both by orders of magnitude relative to past predictions and
eliminating the low-outgassing "false positive" scenario for O as a
biosignature around solar-type stars. Enhanced [OH] increases rainout of
reductants to the surface, relevant to prebiotic chemistry, and may also
suppress CH and H; the latter depends on whether burial of reductants
is inhibited on the underlying planet, as is argued for abiotic worlds. While
we focus on CO-rich worlds, our results are relevant to anoxic planets in
general. Overall, our work advances the state-of-the-art of photochemical
models by providing crucial new HO cross-sections and resolving past
disagreement in the literature, and suggests that detection of spectrally
active trace gases like CO in rocky exoplanet atmospheres may be more
challenging than previously considered.Comment: Manuscript (this version) accepted to ApJ. Cross-section data
available at https://github.com/sukritranjan/ranjanschwietermanharman2020.
Feedback continues to be solicite
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Theoretical predictions and observational data indicate a class of sub-Neptune exoplanets may have water-rich interiors covered by hydrogen-dominated atmospheres. Provided suitable climate conditions, such planets could host surface liquid oceans. Motivated by recent JWST observations of K2-18 b, we self-consistently model the photochemistry and potential detectability of biogenic sulfur gases in the atmospheres of temperate sub-Neptune waterworlds for the first time. On Earth today, organic sulfur compounds produced by marine biota are rapidly destroyed by photochemical processes before they can accumulate to significant levels. Domagal-Goldman et al. suggest that detectable biogenic sulfur signatures could emerge in Archean-like atmospheres with higher biological production or low UV flux. In this study, we explore biogenic sulfur across a wide range of biological fluxes and stellar UV environments. Critically, the main photochemical sinks are absent on the nightside of tidally locked planets. To address this, we further perform experiments with a 3D general circulation model and a 2D photochemical model (VULCAN 2D) to simulate the global distribution of biogenic gases to investigate their terminator concentrations as seen via transmission spectroscopy. Our models indicate that biogenic sulfur gases can rise to potentially detectable levels on hydrogen-rich water worlds, but only for enhanced global biosulfur flux (≳20 times modern Earth’s flux). We find that it is challenging to identify DMS at 3.4 μm where it strongly overlaps with CH4, whereas it is more plausible to detect DMS and companion byproducts, ethylene (C2H4) and ethane (C2H6), in the mid-infrared between 9 and 13 μm
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Theoretical predictions and observational data indicate a class of sub-Neptune exoplanets may have water-rich interiors covered by hydrogen-dominated atmospheres. Provided suitable climate conditions, such planets could host surface liquid oceans. Motivated by recent JWST observations of K2-18 b, we self-consistently model the photochemistry and potential detectability of biogenic sulfur gases in the atmospheres of temperate sub-Neptune waterworlds for the first time. On Earth today, organic sulfur compounds produced by marine biota are rapidly destroyed by photochemical processes before they can accumulate to significant levels. Domagal-Goldman et al. suggest that detectable biogenic sulfur signatures could emerge in Archean-like atmospheres with higher biological production or low UV flux. In this study, we explore biogenic sulfur across a wide range of biological fluxes and stellar UV environments. Critically, the main photochemical sinks are absent on the nightside of tidally locked planets. To address this, we further perform experiments with a 3D general circulation model and a 2D photochemical model (VULCAN 2D) to simulate the global distribution of biogenic gases to investigate their terminator concentrations as seen via transmission spectroscopy. Our models indicate that biogenic sulfur gases can rise to potentially detectable levels on hydrogen-rich water worlds, but only for enhanced global biosulfur flux (≳20 times modern Earth's flux). We find that it is challenging to identify DMS at 3.4 μm where it strongly overlaps with CH4, whereas it is more plausible to detect DMS and companion byproducts, ethylene (C2H4) and ethane (C2H6), in the mid-infrared between 9 and 13 μm
Is the Pale Blue Dot unique? Optimized photometric bands for identifying Earth-like exoplanets
The next generation of ground and space-based telescopes will image habitable
planets around nearby stars. A growing literature describes how to characterize
such planets with spectroscopy, but less consideration has been given to the
usefulness of planet colors. Here, we investigate whether potentially
Earth-like exoplanets could be identified using UV-visible-to-NIR wavelength
broadband photometry (350-1000 nm). Specifically, we calculate optimal
photometric bins for identifying an exo-Earth and distinguishing it from
uninhabitable planets including both Solar System objects and model exoplanets.
The color of some hypothetical exoplanets - particularly icy terrestrial worlds
with thick atmospheres - is similar to Earth's because of Rayleigh scattering
in the blue region of the spectrum. Nevertheless, subtle features in Earth's
reflectance spectrum appear to be unique. In particular, Earth's reflectance
spectrum has a 'U-shape' unlike all our hypothetical, uninhabitable planets.
This shape is partly biogenic because O2-rich, oxidizing air is transparent to
sunlight, allowing prominent Rayleigh scattering, while ozone absorbs visible
light, creating the bottom of the 'U'. Whether such uniqueness has practical
utility depends on observational noise. If observations are photon limited or
dominated by astrophysical sources (zodiacal light or imperfect starlight
suppression), then the use of broadband visible wavelength photometry to
identify Earth twins has little practical advantage over obtaining detailed
spectra. However, if observations are dominated by dark current then optimized
photometry could greatly assist preliminary characterization. We also calculate
the optimal photometric bins for identifying extrasolar Archean Earths, and
find that the Archean Earth is more difficult to unambiguously identify than a
modern Earth twin.Comment: 10 figures, 38 page
Biogenic sulfur gases as biosignatures on temperate sub-Neptune waterworlds
Theoretical predictions and observational data indicate a class of
sub-Neptune exoplanets may have water-rich interiors covered by
hydrogen-dominated atmospheres. Provided suitable climate conditions, such
planets could host surface liquid oceans. Motivated by recent JWST observations
of K2-18 b, we self-consistently model the photochemistry and potential
detectability of biogenic sulfur gases in the atmospheres of temperate
sub-Neptune waterworlds for the first time. On Earth today, organic sulfur
compounds produced by marine biota are rapidly destroyed by photochemical
processes before they can accumulate to significant levels. Domagal-Goldman et
al. (2011) suggest that detectable biogenic sulfur signatures could emerge in
Archean-like atmospheres with higher biological production or low UV flux. In
this study, we explore biogenic sulfur across a wide range of biological fluxes
and stellar UV environments. Critically, the main photochemical sinks are
absent on the nightside of tidally locked planets. To address this, we further
perform experiments with a 3D GCM and a 2D photochemical model (VULCAN 2D (Tsai
et al. 2024)) to simulate the global distribution of biogenic gases to
investigate their terminator concentrations as seen via transmission
spectroscopy. Our models indicate that biogenic sulfur gases can rise to
potentially detectable levels on hydrogen-rich waterworlds, but only for
enhanced global biosulfur flux (20 times modern Earth's flux). We find
that it is challenging to identify DMS at 3.4 where it strongly
overlaps with CH, whereas it is more plausible to detect DMS and companion
byproducts, ethylene (CH) and ethane (CH), in the mid-infrared
between 9 and 13 .Comment: 9 pages, 4 figures, accepted for publication in ApJ
- …