51 research outputs found

    Festlegung des Bemessungshochwassers für Anlagen des technischen Hochwasserschutzes

    Get PDF
    Immunoblot analysis of oligodendroglial and myelination markers. (A) Immunoblot analysis of the levels of MBP, CNPase and Olig2 in non-tg and MBP-α-syn tg mice treated with LV-control or LV-CD5-D5-ApoB, and vehicle or lenalidomide. Significant results of three mice per group are shown. (B) Densitometric analysis of the levels of MBP, CNPase and Olig2 in non-tg and MBP-α-syn tg mice treated with LV-control or LV-CD5-D5-ApoB, and vehicle or lenalidomide. Results are presented as average ± SEM. (TIF 1161 kb

    Effect of a-Synuclein expression level and temporal expression pattern on olfactory bulb neurogenesis.

    No full text
    <p>The early expression of relatively low levels of transgene (tg, purple bar) in PDGF animals leads to a significant reduction of newborn neurons by affecting cell survival but not cell differentiation. In contrast, a stronger expression of a-Synuclein at later stages of neuronal maturation in mThy1 animals causes lesser changes in adult olfactory neurogenesis mainly affecting dopaminergic differentiation in the GLOM.</p

    Stereological quantification in the olfactory bulb glomerular cell layer.

    No full text
    <p>the number of BrdU-positive cells did not differ between transgenic a-Synuclein mThy1 and control animals (panel A). The analysis of the percentage of BrdU/TH-double-positive cells revealed a non-significant (p = 0.07) trend (panel B). The numbers of newly generated dopaminergic neurons are significantly reduced in the a-Synuclein transgenic animals (p = 0.04, panel C). Immunofluorescent confocal images of the glomerular cell layer show colocalization of markers of neuronal (NeuN, panel D) and dopaminergic differentiation (TH, panel E) with BrdU, a marker of cell survival (panel F). Scale bar 20μm.</p

    Comparison of olfactory bulb neurogenesis in mThy1 & PDGF transgenic mice.

    No full text
    <p>Stereologically quantified numbers of cell survival (BrdU-positive cells: panels A, D), percentage of neuronal / dopaminergic differentiation (BrdU/NeuN+ in panel B, respectively BrdU/TH+ cells in panel E) and new neurons (panels C, F) both in the granular cell layer (panels A, B, C) and the glomerular cell layer (D, E, F) of the olfactory bulb. Results were normalized to the numbers of corresponding control animals of each transgenic animal strain. In the granular cell layer, the number of new neurons was decreased in PDGF animals, while mThy1 animals display an unaltered neurogenesis. In the glomerular cell layer however, there was a reduced cell survival in PDGF, respectively a drop in dopaminergic differentiation in mThy1 animals causing a significant reduction in the number of new dopaminergic cells in comparison to respective control animals, which was not significantly different between both transgenic animal strains.</p

    Syn-GFP somatic signal recovers slowly after whole-cell photobleaching and is rapidly mobile during half-cell photobleaching.

    No full text
    <p>A. <i>In vivo</i> multiphoton images of the same region of Syn-GFP positive cell bodies over time. One soma (marked by the white circle) is photobleached just after t = 0. This sequence shows partial recovery of Syn-GFP signal over 60 min. B. Similar time sequence as in panel A but in this case half the soma (marked by the white rectangle) is photobleached just after t = 0. Scale bar in A 10 µm and in B 20 µm. C. Group data plotting normalized fluorescence before and after photobleaching (marked by yellow arrow; whole-cell bleach: n = 20 cells, half-cell bleach: n = 3 cells; n = 3 animals, error bars = 1 SD).</p

    Syn-GFP cell body and high intensity presynaptic terminal expression is relatively stable over time.

    No full text
    <p><i>In vivo</i> multiphoton images of the same region at 2 different time points (A1: day 0, A2: day 49) show that Syn-GFP cell body expression is stable over weeks. Arrows show 4 cell Syn-GFP positive bodies that are present at both time points. Scale bar for A1-2 10 µm. <i>In vivo</i> multiphoton images of two different regions (B1-3 and C1-4) repeatedly imaged at different time points show that high intensity Syn-GFP terminal expression can be followed over months. Arrows show multiple Syn-GFP positive terminals that are present at all the time points and the arrowheads show high intensity terminals that disappeared over time. Scale bars for B 10 µm and C 7.5 µm.</p

    Western blot (WB) analysis of a-Synuclein protein levels.

    No full text
    <p>mThy1 and PDGF transgenic a-Synuclein mice and non transgenic littermates (n tg) are compared: (A, C) WB and (B, C) densitometric analysis (normalized against GAPDH) shows a significant increase in a-Synuclein expression in mThy1 mice both in the cortex (A, B, *<0.05, n = 3 replicates, data shown as means ± SEM) and in the olfactory bulb (C, D, *<0.005).</p

    Syn-GFP expression pattern, cell body and terminal density do not vary with time post-window placement.

    No full text
    <p><i>In vivo</i> multiphoton images of Syn-GFP in the cortex at 3 different times post-window placement (A: day 0, B: 3 months, C: 6 months) shows a similar pattern of staining. Scale bar 10 µm. D. Group data of average Syn-GFP positive cell body density in layer 2/3 of cortex at different times post window placement demonstrates no significant difference. E. Group data of average Syn-GFP positive presynaptic terminal density in layer 2/3 of cortex at different times post-window placement demonstrates no significant difference. F. Representative histograms of mean terminal intensity (in arbitrary units) demonstrate a similar shape at different times post-window placement. n = number of animals, error bars = 1 SD.</p
    • …
    corecore