238 research outputs found

    Restoration of Apollo Data by the NSSDC and the PDS Lunar Data Node

    Get PDF
    The Lunar Data Node (LDN), under the auspices of the Geosciences Node of the Planetary Data System (PDS), is restoring Apollo data archived at the National Space Science Data Center. The Apollo data were arch ived on older media (7 -track tapes. microfilm, microfiche) and in ob solete digital formats, which limits use of the data. The LDN is maki ng these data accessible by restoring them to standard formats and archiving them through PDS. The restoration involves reading the older m edia, collecting supporting data (metadata), deciphering and understa nding the data, and organizing into a data set. The data undergo a pe er review before archive at PDS. We will give an update on last year' s work. We have scanned notebooks from Otto Berg, P.1. for the Lunar Ejecta and Meteorites Experiment. These notebooks contain information on the data and calibration coefficients which we hope to be able to use to restore the raw data into a usable archive. We have scanned Ap ollo 14 and 15 Dust Detector data from microfilm and are in the proce ss of archiving thc scans with PDS. We are also restoring raw dust de tector data from magnetic tape supplied by Yosio Nakamura (UT Austin) . Seiichi Nagihara (Texas Tech Univ.) and others in cooperation with NSSDC are recovering ARCSAV tapes (tapes containing raw data streams from all the ALSEP instruments). We will be preparing these data for archive with PDS. We are also in the process of recovering and archivi ng data not previously archived, from the Apollo 16 Gamma Ray Spectro meter and the Apollo 17 Infrared Spectrometer

    Update on Apollo Data Restoration by the NSSDC and the PDS Lunar Data Node

    Get PDF
    The Lunar Data Node (LDN) , under the auspices of the Geosciences Node of the Planetary Data System (PDS) and the National Space Science Data Center (NSSDC), is continuing its efforts to recover and restore Apollo science data. The data being restored are in large part archived with NSSDC on older media, but unarchived data are also being recovered from other sources. They are typically on 7- or 9-track magnetic tapes, often in obsolete formats, or held on microfilm, microfiche, or paper documents. The goal of the LDN is to restore these data from their current form, which is difficult for most researchers to access, into common digital formats with all necessary supporting data (metadata) and archive the data sets with PDS. Restoration involves reading the data from the original media, deciphering the data formats to produce readable digital data and converting the data into usable tabular formats. Each set of values in the table must then be understood in terms of the quantity measured and the units used. Information on instrument properties, operational history, and calibrations is gathered and added to the data set, along with pertinent references, contacts, and other ancillary documentation. The data set then undergoes a peer review and the final validated product is archived with PDS. Although much of this effort has concentrated on data archived at NSSDC in the 1970's, we have also recovered data and information that were never sent to NSSDC. These data, retrieved from various outside sources, include raw and reduced Gamma-Ray Spectrometer data from Apollos 15 and 16, information on the Apollo 17 Lunar Ejecta And Meteorites experiment, Dust Detector data from Apollos 11, 12, 14, and I5, raw telemetry tapes from the Apollo ALSEPs, and Weekly Status Reports for all the Apollo missions. These data are currently being read or organized, and supporting data is being gathered. We are still looking for the calibrated heat flow data from Apollos 15 and 17 for the period 1975-1977, any assistance or information on these data would be welcome. NSSDC has recently been tasked to release its hard-copy archive, comprising photography, microfilm, and microfiche. The details are still being discussed, but we are concentrating on recovering the valuable lunar data from these materials while they are still readily accessible. We have identified the most critical of these data and written a LASER proposal to fund their restoration. Included in this effort are data from the Apollo 15 and 16 Mass Spectrometers and the Apollo 17 Par-UV Spectrometer and ancillary information on the Apollo 17 Surface Electrical Properties Experiment

    Restoration of Apollo Data by the Lunar Data Project/PDS Lunar Data Node: An Update

    Get PDF
    The Apollo 11, 12, and 14 through 17 missions orbited and landed on the Moon, carrying scientific instruments that returned data from all phases of the missions, included long-lived Apollo Lunar Surface Experiments Packages (ALSEPs) deployed by the astronauts on the lunar surface. Much of these data were never archived, and some of the archived data were on media and in formats that are outmoded, or were deposited with little or no useful documentation to aid outside users. This is particularly true of the ALSEP data returned autonomously for many years after the Apollo missions ended. The purpose of the Lunar Data Project and the Planetary Data System (PDS) Lunar Data Node is to take data collections already archived at the NASA Space Science Data Coordinated Archive (NSSDCA) and prepare them for archiving through PDS, and to locate lunar data that were never archived, bring them into NSSDCA, and then archive them through PDS. Preparing these data for archiving involves reading the data from the original media, be it magnetic tape, microfilm, microfiche, or hard-copy document, converting the outmoded, often binary, formats when necessary, putting them into a standard digital form accepted by PDS, collecting the necessary ancillary data and documentation (metadata) to ensure that the data are usable and well-described, summarizing the metadata in documentation to be included in the data set, adding other information such as references, mission and instrument descriptions, contact information, and related documentation, and packaging the results in a PDS-compliant data set. The data set is then validated and reviewed by a group of external scientists as part of the PDS final archive process. We present a status report on some of the data sets that we are processing

    Lunar Data Node: Apollo Data Restoration and Archiving Update

    Get PDF
    The Lunar Data Node (LDN) of the Planetary Data System (PDS) is responsible for the restoration and archiving of Apollo data. The LDN is located at the National Space Science Data Center (NSSDC), which holds much of the extant Apollo data on microfilm, microfiche, hard-copy documents, and magnetic tapes in older formats. The goal of the restoration effort is to convert the data into user-accessible PDS formats, create a full set of explanatory supporting data (metadata), archive the full data sets through PDS, and post the data online at the PDS Geosciences Node. This will both enable easy use of the data by current researchers and ensure that the data and metadata are securely preserved for future use. We are also attempting to locate and preserve Apollo data which were never archived at NSSDC. We will give a progress report on the data sets we have been restoring and future work

    History and Status of ALSEP and the Apollo Lunar Data Project

    Get PDF
    A suite of automated scientific instruments (the Apollo Lunar Surface Experiment Package, or ALSEP) was installed at each of the landing sites of Apollo 12, 14, 15, 16, and 17 from 1969 to 1972. They operated from deployment until decommissioning on 30 September 1977. These data were continuously transmitted to Earth and saved on the Range Tapes, which were recorded at the Manned Space Flight Network stations. These data were also broken out by experiment and sent to the experiment Principal Investigators on what were called the P.I. Tapes. Starting in April 1973 the Range Tape data were stored in digital format on 7-track magnetic tapes, the ARCSAV Tapes. In February 1976, the handling of the Range Tapes was transferred to UT Galveston. They produced 9-track tapes referred to as the Work Tapes. Following the Apollo program the Range and ARCSAV tapes, which were never archived, were lost. The Work Tapes were archived at the National Space Science Data Center (NSSDC). Some investigators archived their individual experiment data with NSSDC as well, but much of the data had minimal documentation, were not in digital form, or were stored in difficult to translate formats. Data from many experiments were never delivered to the NSSDC. The Lunar Data Project was started to address the problem of both missing and not readily usable data. Our effort has resulted in recovery of some of the ARCSAV tapes, recovery and digitization of a large volume of Apollo scientific and technical documentation, and restoration of many ALSEP and other Apollo data collections. Restoration involves deciphering formats, assembling necessary ancillary data (metadata), and packaging data in digital format to be archived with the Planetary Data System (PDS). Recovery of the data from the ARCSAV tapes involved having the tapes read on special equipment and extracting the individual experiment data out of the integrated data stream. We will report on the history and status of the various recovery efforts

    Perturbation of the Developmental Potential of Preimplantation Mouse Embryos by Hydroxyurea

    Get PDF
    Women are advised not to attempt pregnancy while on hydroxyurea (HU) due to the teratogenic effects of this agent, based on results obtained from animal studies. Several case reports suggest that HU may have minimal or no teratogenic effects on the developing human fetus. Fourteen cases of HU therapy in pregnant patients diagnosed with acute or chronic myelogenous leukemia, primary thrombocythemia, or sickle cell disease (SCD) have been reported. Three pregnancies were terminated by elective abortion; 1 woman developed eclampsia and delivered a phenotypically normal stillborn infant. All other patients delivered live, healthy infants without congenital anomalies. We contend that case studies such as these have too few patients and cannot effectively address the adverse effect of HU on preimplantation embryo or fetuses. The objective of this study was to assess the risks associated with a clinically relevant dose of HU used for the treatment of SCD, on ovulation rate and embryo development, using adult C57BL/6J female mice as a model. In Experiment 1, adult female mice were randomly assigned to a treatment or a control group (N = 20/group). Treatment consisted of oral HU (30 mg/kg) for 28 days; while control mice received saline (HU vehicle). Five days to the cessation of HU dosing, all mice were subjected to folliculogenesis induction with pregnant mare serum gonadotropin (PMSG). Five mice/group were anesthetized at 48 hours post PMSG to facilitate blood collection via cardiac puncture for estradiol-17β (E2) measurement by RIA. Ovulation was induced in the remaining mice at 48 hours post PMSG with human chorionic gonadotropin (hCG) and immediately caged with adult males for mating. Five plugged female mice/group were sacrificed for the determination of ovulation rate. The remaining mated mice were sacrificed about 26 hours post hCG, ovaries excised and weighed and embryos harvested and cultured in Whitten’s medium (WM) supplemented with CZBt. In Experiments 2 and 3, (N = 10/Experiment) folliculogenesis and ovulation were induced in untreated mice followed by mating. Recovered embryos were either exposed continuously (Experiment 2) or intermittently (Experiment 3) to bioavailable HU (18 μg HU/mL of WM + CZBt) or WM + CZBt only (control). Treated mice sustained decreased ovarian wt, ovulation rate and circulating E2 compared with controls (P < 0.05). Fewer embryos retrieved from HU-treated mice developed to blastocyst stage (32%) compared with those from controls (60%; P < 0.05). Furthermore, continuous or intermittent in vitro exposures of embryos to HU also resulted in reduced development to blastocyst stage (continuous HU, 9 vs. control, 63%; P < 0.05; intermittent HU, 20 vs. control, 62%; P < 0.05) with embryos exposed continuously to HU in vitro fairing worse. Even though HU is well tolerated, our data suggest that it compromises folliculogenesis and the ability of generated embryos to develop. Therefore, designed studies with larger numbers of patients receiving HU during pregnancy, with longer follow-up of exposed children and more careful assessment of embryo/fetotoxic effects, are required before this agent can be promoted as safe in pregnancy

    Crop Updates 2005 - Farming Systems

    Get PDF
    This session covers forty four papers from different authors: PLENARY 1. 2005 Outlook, David Stephens and Nicola Telcik, Department of Agriculture FERTILITY AND NUTRITION 2. The effect of higher nitrogen fertiliser prices on rotation and fertiliser strategies in cropping systems, Ross Kingwell, Department of Agriculture and University of Western Australia 3. Stubble management: The short and long term implications for crop nutrition and soil fertility, Wayne Pluske, Nutrient Management Systems and Bill Bowden, Department of Agriculture 4. Stubble management: The pros and cons of different methods, Bill Bowden, Department of Agriculture, Western Australia and Mike Collins, WANTFA 5. Effect of stubble burning and seasonality on microbial processes and nutrient recycling, Frances Hoyle, The University of Western Australia 6. Soil biology and crop production in Western Australian farming systems, D.V. Murphy, N. Milton, M. Osman, F.C. Hoyle, L.K Abbott, W.R. Cookson and S. Darmawanto, The University of Western Australia 7. Urea is as effective as CAN when no rain for 10 days, Bill Crabtree, Crabtree Agricultural Consulting 8. Fertiliser (N,P,S,K) and lime requirements for wheat production in the Merredin district, Geoff Anderson, Department of Agriculture and Darren Kidson, Summit Fertilizers 9. Trace element applications: Up-front verses foliar? Bill Bowden and Ross Brennan, Department of Agriculture 10. Fertcare®, Environmental Product Stewardship and Advisor Standards for thee Fertiliser Industry, Nick Drew, Fertilizer Industry Federation of Australia (FIFA) SOIL AND LAND MANAGEMENT 11. Species response to row spacing, density and nutrition, Bill Bowden, Craig Scanlan, Lisa Sherriff, Bob French and Reg Lunt, Department of Agriculture 12. Investigation into the influence of row orientation in lupin crops, Jeff Russell, Department of Agriculture and Angie Roe, Farm Focus Consultants 13. Deriving variable rate management zones for crops, Ian Maling, Silverfox Solutions and Matthew Adams, DLI 14. In a world of Precision Agriculture, weigh trailers are not passé, Jeff Russell, Department of Agriculture 15. Cover crop management to combat ryegrass resistance and improve yields, Jeff Russell, Department of Agriculture and Angie Roe, Farm Focus Consultants 16. ARGT home page, the place to find information on annual ryegrass toxicity on the web, Dr George Yan, BART Pty Ltd 17. Shallow leading tine (SLT) ripper significantly reduces draft force, improves soil tilth and allows even distribution of subsoil ameliorants, Mohammad Hamza, Glen Riethmuller and Wal Anderson, Department of Agriculture PASTURE ANS SUMMER CROP SYSTEMS 18. New annual pasture legumes for Mediteranean farming systems, Angelo Loi, Phil Nichols, Clinton Revell and David Ferris, Department of Agriculture 19. How sustainable are phase rotations with Lucerne? Phil Ward, CSIRO Plant Industry 20. Management practicalities of summer cropping, Andrea Hills and Sally-Anne Penny, Department of Agriculture 21. Rainfall zone determines the effect of summer crops on winter yields, Andrea Hills, Sally-Anne Penny and David Hall, Department of Agriculture 22. Summer crops and water use, Andrea Hills, Sally-Anne Penny and David Hall, Department of Agriculture, and Michael Robertson and Don Gaydon, CSIRO Brisbane 23. Risk analysis of sorgum cropping, Andrea Hills and Sally-Anne Penny, Department of Agriculture, and Dr Michael Robertson and Don Gaydon, CSIRO Brisbane FARMER DECISION SUPPORT AND ADOPTION 24. Variety release and End Point Royalties – a new system? Tress Walmsley, Department of Agriculture 25. Farming system analaysis using the STEP Tool, Caroline Peek and Megan Abrahams, Department of Agriculture 26. The Leakage Calculator: A simple tool for groundwater recharge assessment, Paul Raper, Department of Agriculture 27. The cost of Salinity Calculator – your tool to assessing the profitability of salinity management options, Richard O’Donnell and Trevor Lacey, Department of Agriculture 28. Climate decision support tools, Meredith Fairbanks and David Tennant, Department of Agriculture 29. Horses for courses – using the best tools to manage climate risk, Cameron Weeks, Mingenew-Irwin Group/Planfarm and Richard Quinlan, Planfarm Agronomy 30. Use of seasonal outlook for making N decisions in Merredin, Meredith Fairbanks and Alexandra Edward, Department of Agriculture 31. Forecasts and profits, Benefits or bulldust? Chris Carter and Doug Hamilton, Department of Agriculture 32. A tool to estimate fixed and variable header and tractor depreciation costs, Peter Tozer, Department of Agriculture 33. Partners in grain: ‘Putting new faces in new places’, Renaye Horne, Department of Agriculture 34. Results from the Grower group Alliance, Tracey Gianatti, Grower Group Alliance 35. Local Farmer Group Network – farming systems research opportunities through local groups, Paul Carmody, Local Farmer Group Network GREENHOUSE GAS AND CLIMATE CHANGE 36. Changing rainfall patterns in the grainbelt, Ian Foster, Department of Agriculture 37. Vulnerability of broadscale agriculture to the impacts of climate change, Michele John, CSIRO (formerly Department of Agriculture) and Ross George, Department of Agriculture 38. Impacts of climate change on wheat yield at Merredin, Imma Farré and Ian Foster, Department of Agriculture 39. Climate change, land use suitability and water security, Ian Kininmonth, Dennis van Gool and Neil Coles, Department of Agriculture 40. Nitrous oxide emissions from cropping systems, Bill Porter, Department of Agriculture, Louise Barton, University of Western Australia 41. The potential of greenhouse sinks to underwrite improved land management in Western Australia, Richard Harper and Peter Ritson, CRC for Greenhouse Accounting and Forest Products Commission, Tony Beck, Tony Beck Consulting Services, Chris Mitchell and Michael Hill, CRC for Greenhouse Accounting 42. Removing uncertainty from greenhouse emissions, Fiona Barker-Reid, Will Gates, Ken Wilson and Rob Baigent, Department of Primary Industries - Victoria and CRC for Greenhouse Accounting (CRCGA), and Ian Galbally, Mick Meyer and Ian Weeks, CSIRO Atmospheric Research and CRCGA 43. Greenhouse in Agriculture Program (GIA), Traci Griffin, CRC for Greenhouse Accounting 44. Grains Greenhouse Accounting framework, D. Rodriguez, M. Probust, M. Meyers, D. Chen, A. Bennett, W. Strong, R. Nussey, I. Galbally and M. Howden CONTACT DETAILS FOR PRINCIPAL AUTHOR

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    • …
    corecore