47 research outputs found

    Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large‐scale deletions or point mutations

    Get PDF
    We designed and engineered mitochondrially targeted obligate heterodimeric zinc finger nucleases (mtZFNs) for site‐specific elimination of pathogenic human mitochondrial DNA (mtDNA). We used mtZFNs to target and cleave mtDNA harbouring the m.8993T>G point mutation associated with neuropathy, ataxia, retinitis pigmentosa (NARP) and the “common deletion” (CD), a 4977‐bp repeat‐flanked deletion associated with adult‐onset chronic progressive external ophthalmoplegia and, less frequently, Kearns‐Sayre and Pearson's marrow pancreas syndromes. Expression of mtZFNs led to a reduction in mutant mtDNA haplotype load, and subsequent repopulation of wild‐type mtDNA restored mitochondrial respiratory function in a CD cybrid cell model. This study constitutes proof‐of‐principle that, through heteroplasmy manipulation, delivery of site‐specific nuclease activity to mitochondria can alleviate a severe biochemical phenotype in primary mitochondrial disease arising from deleted mtDNA species

    Targeted genome editing across species using ZFNs and TALENs

    Get PDF
    Evolutionary studies necessary to dissect diverse biological processes have been limited by the lack of reverse genetic approaches in most organisms with sequenced genomes. We established a broadly applicable strategy using zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for targeted disruption of endogenous genes and cis-acting regulatory elements in diverged nematode species

    Genetic engineering of human ES and iPS cells using TALE nucleases

    Get PDF
    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator–like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).National Institutes of Health (U.S.) (Grant R37-CA084198)National Institutes of Health (U.S.) (Grant RO1-CA087869)National Institutes of Health (U.S.) (Grant RO1-HD045022)Howard Hughes Medical Institut

    Human Intestinal Tissue with Adult Stem Cell Properties Derived from Pluripotent Stem Cells

    Get PDF
    Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. Here, using an endogenous LGR5-GFP reporter, we derived adult stem cells from hPSCs that gave rise to functional human intestinal tissue comprising all major cell types of the intestine. Histological and functional analyses revealed that such human organoid cultures could be derived with high purity and with a composition and morphology similar to those of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. This adult stem cell system provides a platform for studying human intestinal disease in vitro using genetically engineered hPSCs

    Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo.

    Get PDF
    Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin

    Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases

    Get PDF
    HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals

    PPARγ knockdown by engineered transcription factors: exogenous PPARγ2 but not PPARγ1 reactivates adipogenesis

    No full text
    To determine functional differences between the two splice variants of PPARγ (γ1 and γ2), we sought to selectively repress γ2 expression by targeting engineered zinc finger repressor proteins (ZFPs) to the γ2-specific promoter, P2. In 3T3-L1 cells, expression of ZFP55 resulted in >50% reduction in γ2 expression but had no effect on γ1, whereas adipogenesis was similarly reduced by 50%. However, ZFP54 virtually abolished both γ2 and γ1 expression, and completely blocked adipogenesis. Overexpression of exogenous γ2 in the ZFP54-expressing cells completely restored adipogenesis, whereas overexpression of γ1 had no effect. This finding clearly identifies a unique role for the PPARγ2 isoform
    corecore