95 research outputs found

    Modulation of nucleosome dynamics in Huntington's disease

    Get PDF
    Transcriptional dysregulation and aberrant chromatin remodeling are central features in the pathology of Huntington's disease (HD). In order to more fully characterize these pathogenic events, an assessment of histone profiles and associated gene changes were performed in transgenic N171-82Q (82Q) and R6/2 HD mice. Analyses revealed significant chromatin modification, resulting in reduced histone acetylation with concomitant increased histone methylation, consistent with findings observed in HD patients. While there are no known interventions that ameliorate or arrest HD progression, DNA/RNA-binding anthracyclines may provide significant therapeutic potential by correcting pathological nucleosome changes and realigning transcription. Two such anthracyclines, chromomycin and mithramycin, improved altered nucleosome homeostasis in HD mice, normalizing the chromatin pattern. There was a significant shift in the balance between methylation and acetylation in treated HD mice to that found in wild-type mice, resulting in greater acetylation of histone H3 at lysine 9 and promoting gene transcription. Gene expression profiling in anthracycline-treated HD mice showed molecular changes that correlate with disease correction, such that a subset of downregulated genes were upregulated with anthracycline treatment. Improved nucleosomal dynamics were concurrent with a significant improvement in the behavioral and neuropathological phenotype observed in HD mice. These data show the ability of anthracycline compounds to rebalance epigenetic histone modification and, as such, may provide the rationale for the design of human clinical trials in HD patient

    Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the R6/2 Mouse Model of HD

    Get PDF
    Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related. © 2013 Rattray et al

    The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation.

    Get PDF
    OBJECTIVES: The interaction between the immune system and tumor cells is an important feature for the prognosis and treatment of cancer. Multiplex immunohistochemistry (mIHC) and multiplex immunofluorescence (mIF) analyses are emerging technologies that can be used to help quantify immune cell subsets, their functional state, and their spatial arrangement within the tumor microenvironment. METHODS: The Society for Immunotherapy of Cancer (SITC) convened a task force of pathologists and laboratory leaders from academic centers as well as experts from pharmaceutical and diagnostic companies to develop best practice guidelines for the optimization and validation of mIHC/mIF assays across platforms. RESULTS: Representative outputs and the advantages and disadvantages of mIHC/mIF approaches, such as multiplexed chromogenic IHC, multiplexed immunohistochemical consecutive staining on single slide, mIF (including multispectral approaches), tissue-based mass spectrometry, and digital spatial profiling are discussed. CONCLUSIONS: mIHC/mIF technologies are becoming standard tools for biomarker studies and are likely to enter routine clinical practice in the near future. Careful assay optimization and validation will help ensure outputs are robust and comparable across laboratories as well as potentially across mIHC/mIF platforms. Quantitative image analysis of mIHC/mIF output and data management considerations will be addressed in a complementary manuscript from this task force

    RITUAL, TIME, AND ENTERNITY

    Full text link
    It is argued here that the construction of time and eternity are among ritual's entailments. In dividing continuous duration into distinct periods ritual distinguishes two temporal conditions: (1) that prevailing in mundane periods and (2) that prevailing during the intervals between them. Differences in the frequency, length, and relationship among the rituals constituting different liturgical orders are considered, as are differences between mundane periods and ritual's intervals with respect to social relations, cognitive modes, meaningfulness, and typical interactive frequencies. Periods, it is observed, relate to intervals as everchanging to never-changing, and close relationships of never changing to eternity, eternity to sanctity, and sanctity to truth are proposed. In the argument that ritual's “times out of time” really are outside mundane time, similarities to the operations of digital computers and Herbert Simon's discussion of interaction frequencies in the organization of matter are noted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72989/1/j.1467-9744.1992.tb00996.x.pd
    corecore