4,102 research outputs found

    Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 5: Unsteady counterrotation ducted propfan analysis

    Get PDF
    The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOAR\CR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This document is the final report describing the theoretical basis and analytical results from the ADPAC-AOACR codes developed under task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR Program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows

    Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems, task 1: Ducted propfan analysis

    Get PDF
    The time-dependent three-dimensional Euler equations of gas dynamics were solved numerically to study the steady compressible transonic flow about ducted propfan propulsion systems. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. An implicit residual smoothing operator was used to aid convergence. Two calculation grids were employed in this study. The first grid utilized an H-type mesh network with a branch cut opening to represent the axisymmetric cowl. The second grid utilized a multiple-block mesh system with a C-type grid about the cowl. The individual blocks were numerically coupled in the Euler solver. Grid systems were generated by a combined algebraic/elliptic algortihm developed specifically for ducted propfans. Numerical calculations were initially performed for unducted propfans to verify the accuracy of the three-dimensional Euler formulation. The Euler analyses were then applied for the calculation of ducted propfan flows, and predicted results were compared with experimental data for two cases. The three-dimensional Euler analyses displayed exceptional accuracy, although certain parameters were observed to be very sensitive to geometric deflections. Both solution schemes were found to be very robust and demonstrated nearly equal efficiency and accuracy, although it was observed that the multi-block C-grid formulation provided somewhat better resolution of the cowl leading edge region

    Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 5: Unsteady counterrotation ducted propfan analysis. Computer program user's manual

    Get PDF
    The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOACR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This report is intended to serve as a computer program user's manual for the ADPAC-AOACR codes developed under Task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows

    Experimental characterisation of (localised) Deformation Phenomena in Granular Geomaterials from Sample Down to Inter-and Intra-grain Scales

    Get PDF
    AbstractThis paper outlines some recent advances in the full-field experimental characterisation of the mechanics of granular geomaterials (in particular, sands) using a range of methods that provide characterisation at different scales, from the sample-scale down to the inter- and intra-grain scale. The techniques used are “full-field” approaches involving in-situ x-ray micro-tomography, 3D-volumetric digital image analysis/correlation and grain ID-tracking, in-situ 3D x-ray diffraction and in-situ, spatially-resolved neutron diffraction. These methods provide new data on the mechanics of sand at different scales, including continuum measures of strain, porosity, and fabric plus discrete measures of particle kinematics and force transmission. The results of such measurements might be used to advance higher-order continuum theories, and provide the necessary input parameters, or to calibrate discrete grain-scale simulations of sand behaviour to explore loading paths that are inaccessible in the laboratory

    NPSS Multidisciplinary Integration and Analysis

    Get PDF
    The objective of this task was to enhance the capability of the Numerical Propulsion System Simulation (NPSS) by expanding its reach into the high-fidelity multidisciplinary analysis area. This task investigated numerical techniques to convert between cold static to hot running geometry of compressor blades. Numerical calculations of blade deformations were iteratively done with high fidelity flow simulations together with high fidelity structural analysis of the compressor blade. The flow simulations were performed with the Advanced Ducted Propfan Analysis (ADPAC) code, while structural analyses were performed with the ANSYS code. High fidelity analyses were used to evaluate the effects on performance of: variations in tip clearance, uncertainty in manufacturing tolerance, variable inlet guide vane scheduling, and the effects of rotational speed on the hot running geometry of the compressor blades

    Investigation of Advanced Counterrotation Blade Configuration Concepts for High Speed Turboprop Systems. Task 8: Cooling Flow/heat Transfer Analysis User's Manual

    Get PDF
    The focus of this task was to validate the ADPAC code for heat transfer calculations. To accomplish this goal, the ADPAC code was modified to allow for a Cartesian coordinate system capability and to add boundary conditions to handle spanwise periodicity and transpiration boundaries. This user's manual describes how to use the ADPAC code as developed in Task 5, NAS3-25270, including the modifications made to date in Tasks 7 and 8, NAS3-25270

    Experimental quantification of 3D deformations in sensitive clay during stress-probing

    Get PDF
    Unique four-dimensional (4D) deformation data are collected during drained triaxial tests on intact specimens of a natural sensitive clay. This requires the development of a miniature triaxial cell for advanced stress path testing, specifically designed for X-ray computed tomography. Salient features include the omission of a membrane, and a mounting procedure that minimises disturbance by the experimenter. Three distinct drained stress ratios are studied for pseudo-isotropic, K-0, and highly deviatoric loading paths. The results indicate that the K-0 path shows the most uniform deformation mechanism, where the measured ratio of deviatoric and volumetric strain increments reach the stress ratio applied at boundary value level for large magnitudes of total strain. The pseudo-isotropic test also reaches a strain ratio close to eta at large total strain levels; however, the deformation field is less uniform. Furthermore, the highly deviatoric stress path shows the most heterogeneous deformation fields commensurate with the applied stress ratio, although the ratio of deviatoric and volumetric strain increments falls above the eta applied. The mean value of the three-dimensional spatial fields of strain corresponds well with the changes observed at boundary level, supporting prior research on drained stress-probing on clays for which there are no 4D deformation data available

    Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis

    Get PDF
    The objective of this study was to demonstrate the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). Detailed analyses were performed using three- dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off- design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component acro/mechanical interactions that previously were unknown to the designer until after hardware testing
    corecore