16 research outputs found
Misuse of âPowerâ and other mechanical terms in sport and exercise science research
In spite of the SystĂšme International dâUnitĂšs (SI) that was published in 1960, there continues to be widespread misuse of the terms and nomenclature of mechanics in descriptions of exercise performance. Misuse applies principally to failure to distinguish between mass and weight, velocity and speed, and especially the terms "work" and "power." These terms are incorrectly applied across the spectrum from high-intensity short-duration to long-duration endurance exercise. This review identifies these misapplications and proposes solutions. Solutions include adoption of the term "intensity" in descriptions and categorisations of challenge imposed on an individual as they perform exercise, followed by correct use of SI terms and units appropriate to the specific kind of exercise performed. Such adoption must occur by authors and reviewers of sport and exercise research reports to satisfy the principles and practices of science and for the field to advance
Metabolites related to purine catabolism and risk of type 2 diabetes incidence; modifying efects of the TCF7L2-rs7903146 polymorphism
Studies examining associations between purine metabolites and type 2 diabetes (T2D) are limited. We prospectively examined associations between plasma levels of purine metabolites with T2D risk and the modifying effects of transcription factor-7-like-2 (TCF7L2) rs7903146 polymorphism on these associations. This is a case-cohort design study within the PREDIMED study, with 251 incident T2D cases and a random sample of 694 participants (641 non-cases and 53 overlapping cases) without T2D at baseline (median follow-up: 3.8 years). Metabolites were semi-quantitatively profiled with LC-MS/MS. Cox regression analysis revealed that high plasma allantoin levels, including allantoin-to-uric acid ratio and high xanthine-to-hypoxanthine ratio were inversely and positively associated with T2D risk, respectively, independently of classical risk factors. Elevated plasma xanthine and inosine levels were associated with a higher T2D risk in homozygous carriers of the TCF7L2-rs7903146 T-allele. The potential mechanisms linking the aforementioned purine metabolites and T2D risk must be also further investigated
Plasma Metabolites Associated with Coffee Consumption: A Metabolomic Approach within the PREDIMED Study
Few studies have examined the association of a wide range of metabolites with total and subtypes of coffee consumption. The aim of this study was to investigate associations of plasma metabolites with total, caffeinated, and decaffeinated coffee consumption. We also assessed the ability of metabolites to discriminate between coffee consumption categories. This is a cross-sectional analysis of 1664 participants from the PREDIMED study. Metabolites were semiquantitatively profiled using a multiplatform approach. Consumption of total coffee, caffeinated coffee and decaffeinated coffee was assessed by using a validated food frequency questionnaire. We assessed associations between 387 metabolite levels with total, caffeinated, or decaffeinated coffee consumption (â„50 mL coffee/day) using elastic net regression analysis. Ten-fold cross-validation analyses were used to estimate the discriminative accuracy of metabolites for total and subtypes of coffee. We identified different sets of metabolites associated with total coffee, caffeinated and decaffeinated coffee consumption. These metabolites consisted of lipid species (e.g., sphingomyelin, phosphatidylethanolamine, and phosphatidylcholine) or were derived from glycolysis (alpha-glycerophosphate) and polyphenol metabolism (hippurate). Other metabolites included caffeine, 5-acetylamino-6-amino-3-methyluracil, cotinine, kynurenic acid, glycocholate, lactate, and allantoin. The area under the curve (AUC) was 0.60 (95% CI 0.56â0.64), 0.78 (95% CI 0.75â0.81) and 0.52 (95% CI 0.49â0.55), in the multimetabolite model, for total, caffeinated, and decaffeinated coffee consumption, respectively. Our comprehensive metabolic analysis did not result in a new, reliable potential set of metabolites for coffee consumption
Assessment of surface water quality in the Malaysian Coastal Waters by using multivariate analyses
Coastal water samples were collected from 20 sampling sites in the southern part of Peninsular Malaysia. Seven physico-chemical parameters were measured directly in-situ while water samples were collected and analysed for 6 dissolved trace metal concentrations. The surface water (0-20 cm) physico-chemical parameters including temperature, salinity, dissolved oxygen (DO), pH, total dissolved solids (TDS), specific conductance (SpC) and turbidity while the dissolved trace metals were Cd, Cu, Fe, Ni, Pb and Zn. The ranges for the physico-chemical parameters were 28.07-35.6ÂșC for temperature, 0.18-32.42 ppt for salinity, 2.20-12.03 mg/L for DO, 5.50-8.53 for pH, 0.24-31.65 mg/L for TDS, 368-49452 ÎŒS/cm for SpC and 0-262 NTU for turbidity while the dissolved metals (mg/L) were 0.013-0.147 for Cd, 0.024-0.143 for Cu, 0.266-2.873 for Fe, 0.027-0.651 for Ni, 0.018-0.377 for Pb and 0.032-0.099 for Zn. Based on multivariate analysis (including correlation, cluster and principal component analyses), the polluted sites were found at Kg. Pasir Puteh and Tg. Kupang while Ni and Pb were identified as two major dissolved metals of high variation in the coastal waters. Therefore, water quality monitoring and control of release of untreated anthropogenic wastes into rivers and coastal waters are strongly needed
The Methanobacterium thermoautotrophicum MCM protein can form heptameric rings
Mini-chromosome maintenance (MCM) proteins form a conserved family found in all eukaryotes and are essential for DNA replication. They exist as heteromultimeric complexes containing as many as six different proteins. These complexes are believed to be the replicative helicases, functioning as hexameric rings at replication forks. In most archaea a single MCM protein exists. The protein from Methanobacterium thermoautotrophicum (mtMCM) has been reported to assemble into a large complex consistent with a dodecamer. We show that mtMCM can assemble into a heptameric ring. This ring contains a C-terminal helicase domain that can be fit with crystal structures of ring helicases and an N-terminal domain of unknown function. While the structure of the ring is very similar to that of hexameric replicative helicases such as bacteriophage T7 gp4, our results show that such ring structures may not be constrained to have only six subunits