43 research outputs found
Determinants of Tissue PCOâ in Shock and Sepsis: Relationship to the Microcirculation
The development of gastrointestinal tonometry was an important step in the monitoring of tissue dysoxia. It rapidly became a useful tool in basic research. In addition, and for the first time, a regional parameter could be used to detect and to treat hypoperfusion. From an experimental point of view, tonometry adequately tracks intramucosal acidosis, i.e., the increase in intramucosal-arterial PCO2 difference (ÎPCO2). Likewise, the increase in ÎPCO2 is better than other systemic and intestinal variables to show tissue hypoperfusion in normal volunteers and in experimental models. Intramucosal acidosis is a sensitive predictor of gastric and colonic mucosal ischemia. Furthermore, gastric tonometry is an insightful predictor of outcome. This usefulness has been shown in postoperative, critically ill, septic and shock patients. Gastric tonometry might also be used to assess the effect of vasoactive drugs. Finally, intramucosal pH (pHi) has been evaluated as a guide for resuscitation. Gutierrez et al. demonstrated in a randomized controlled trial that pHi-guided therapy could decrease mortality in critically ill patients.Facultad de Ciencias MĂ©dica
Comparison of Different Methods for the Calculation of the Microvascular Flow Index
The microvascular flow index (MFI) is commonly used to semiquantitatively characterize the velocity of microcirculatory perfusion as absent (0), intermittent (1), sluggish (2), or normal (3). There are three approaches to compute MFI: (1) the average of the predominant flow in each of the four quadrants (MFIby quadrants), (2) the direct assessment during the bedside video acquisition (MFIpoint of care), and (3) the mean value of the MFIs determined in each individual vessel (MFIvessel by vessel). We hypothesized that the agreement between the MFIs is poor and that the MFIvessel by vessel better reflects the microvascular perfusion. For this purpose, we analyzed 100 videos from septic patients. In 25 of them, red blood cell (RBC) velocity was also measured. There were wide 95% limits of agreement between MFIby quadrants and MFIpoint of care (1.46), between MFIby quadrants and MFIvessel by vessel (2.85), and between MFIby point of care and MFIvessel by vessel (2.56). The MFIs significantly correlated with the RBC velocity and with the fraction of perfused small vessels, but MFIvessel by vessel showed the best R2. Although the different methods for the calculation of MFI reflect microvascular perfusion, they are not interchangeable and MFIvessel by vessel might be better
Comparison of different methods for the calculation of the microvascular flow index
The microvascular flow index (MFI) is commonly used to semiquantitatively characterize the velocity of microcirculatory perfusion as absent (0), intermittent (1), sluggish (2), or normal (3). There are three approaches to compute MFI: (1) the average of the predominant flow in each of the four quadrants (MFI by quadrants), (2) the direct assessment during the bedside video acquisition (MFI point of care), and (3) the mean value of the MFIs determined in each individual vessel (MFI vessel by vessel). We hypothesized that the agreement between the MFIs is poor and that the MFI vessel by vessel better reflects the microvascular perfusion. For this purpose, we analyzed 100 videos from septic patients. In 25 of them, red blood cell (RBC) velocity was also measured. There were wide 95% limits of agreement between MFI by quadrants and MFI point of care (1.46), between MFI by quadrants and MFI vessel by vessel (2.85), and between MFI by point of care and MFI vessel by vessel (2.56). The MFIs significantly correlated with the RBC velocity and with the fraction of perfused small vessels, but MFI vessel by vessel showed the best R 2. Although the different methods for the calculation of MFI reflect microvascular perfusion, they are not interchangeable and MFI vessel by vessel might be better.Facultad de Ciencias MĂ©dica
Comparison of different methods for the calculation of the microvascular flow index
The microvascular flow index (MFI) is commonly used to semiquantitatively characterize the velocity of microcirculatory perfusion as absent (0), intermittent (1), sluggish (2), or normal (3). There are three approaches to compute MFI: (1) the average of the predominant flow in each of the four quadrants (MFI by quadrants), (2) the direct assessment during the bedside video acquisition (MFI point of care), and (3) the mean value of the MFIs determined in each individual vessel (MFI vessel by vessel). We hypothesized that the agreement between the MFIs is poor and that the MFI vessel by vessel better reflects the microvascular perfusion. For this purpose, we analyzed 100 videos from septic patients. In 25 of them, red blood cell (RBC) velocity was also measured. There were wide 95% limits of agreement between MFI by quadrants and MFI point of care (1.46), between MFI by quadrants and MFI vessel by vessel (2.85), and between MFI by point of care and MFI vessel by vessel (2.56). The MFIs significantly correlated with the RBC velocity and with the fraction of perfused small vessels, but MFI vessel by vessel showed the best R 2. Although the different methods for the calculation of MFI reflect microvascular perfusion, they are not interchangeable and MFI vessel by vessel might be better.Facultad de Ciencias MĂ©dica
Dissociation between sublingual and gut microcirculation in the response to a fluid challenge in postoperative patients with abdominal sepsis
Results: Fluid administration increased the cardiac index (2.6 ± 0.5 vs. 3.3 ± 1.0 L/min/m2, P < 0.01) and mean arterial blood pressure (68 ± 11 vs. 82 ± 12 mm Hg, P < 0.0001). The sublingual but not the intestinal red blood cell (RBC) velocity increased (912 ± 270 vs. 1,064 ± 200 ÎŒm/s, P < 0.002 and 679 ± 379 vs. 747 ± 419 ÎŒm/s, P = 0.12, respectively). The sublingual and intestinal perfused vascular density (PVD) did not change significantly (15.2 ± 2.9 vs. 16.1 ± 1.2 mm/mm2 and 12.3 ± 6.7 vs. 13.0 ± 6.7 mm/mm2). We found no correlation between the basal sublingual and intestinal RBC velocities or between their changes in response to the fluid challenge. The individual changes in sublingual RBC velocity correlated with those in cardiac index and basal RBC velocity. Individual changes in intestinal RBC velocity did not correlate with either the cardiac index modifications or the basal RBC velocity. The same pattern was observed with the sublingual and the intestinal PVDs. The sublingual RBC velocities and PVDs were similar between survivors and nonsurvivors. But the intestinal RBC velocities and PVDs were lower in nonsurvivors.Conclusions: In this series of postoperative septic patients, we found a dissociation between sublingual and intestinal microcirculation. The improvement in the sublingual microcirculation after fluid challenge was dependent on the basal state and the increase in cardiac output. In contrast, the intestinal microcirculation behaved as an isolated territory.Methods: Twenty-two septic patients in the first postoperative day of an intestinal surgery, in which an ostomy had been constructed, were evaluated both before and 20 min after a challenge of 10 mL/kg of 6% hydroxyethylstarch 130/0.4. We measured systemic hemodynamics and sublingual and intestinal microcirculation. Correlations between variables were determined through the Pearson test.Background: This study was performed to compare intestinal and sublingual microcirculation and their response to a fluid challenge.Facultad de Ciencias MĂ©dica
0588. Effects of norepinephrine on tissue perfusion in a sheep model of intraabdominal hypertension
Intraabdominal hypertension (IAH) produces detrimental effects on tissue perfusion. A putative underlying mechanism is the decrease in abdominal perfusion pressure (APP = mean arterial pressure-intraabdominal pressure). Nevertheless, the benefits of increasing blood pressure on tissue perfusion are controversial.Facultad de Ciencias MĂ©dica
Urinary bladder partial carbon dioxide tension during hemorrhagic shock and reperfusion: an observational study
INTRODUCTION: Continuous monitoring of bladder partial carbon dioxide tension (PCO(2)) using fibreoptic sensor technology may represent a useful means by which tissue perfusion may be monitored. In addition, its changes might parallel tonometric gut PCO(2). Our hypothesis was that bladder PCO(2), measured using saline tonometry, will be similar to ileal PCO(2 )during ischaemia and reperfusion. METHOD: Six anaesthetized and mechanically ventilated sheep were bled to a mean arterial blood pressure of 40 mmHg for 30 min (ischaemia). Then, blood was reinfused and measurements were repeated at 30 and 60 min (reperfusion). We measured systemic and gut oxygen delivery and consumption, lactate and various PCO(2 )gradients (urinary bladderâarterial, ilealâarterial, mixed venousâarterial and mesenteric venousâarterial). Both bladder and ileal PCO(2 )were measured using saline tonometry. RESULTS: After bleeding systemic and intestinal oxygen supply dependency and lactic acidosis ensued, along with elevations in PCO(2 )gradients when compared with baseline values (all values in mmHg; bladder ÎPCO(2 )3 ± 3 versus 12 ± 5, ileal ÎPCO(2 )9 ± 5 versus 29 ± 16, mixed venousâarterial PCO(2 )5 ± 1 versus 13 ± 4, and mesenteric venousâarterial PCO(2 )4 ± 2 versus 14 ± 4; P < 0.05 versus basal for all). After blood reinfusion, PCO(2 )gradients returned to basal values except for bladder ÎPCO(2), which remained at ischaemic levels (13 ± 7 mmHg). CONCLUSION: Tissue and venous hypercapnia are ubiquitous events during low flow states. Tonometric bladder PCO(2 )might be a useful indicator of tissue hypoperfusion. In addition, the observed persistence of bladder hypercapnia after blood reinfusion may identify a territory that is more susceptible to reperfusion injury. The greatest increase in PCO(2 )gradients occurred in gut mucosa. Moreover, the fact that ileal ÎPCO(2 )was greater than the mesenteric venousâarterial PCO(2 )suggests that tonometrically measured PCO(2 )reflects mucosal rather than transmural PCO(2). Ileal ÎPCO(2 )appears to be the more sensitive marker of ischaemia
Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study
Background: The identification of anaerobic metabolism in critically ill patients is a challenging task. Observational studies have suggested that the ratio of venoarterial PCO2 (PvâaCO2) to arteriovenous oxygen content difference (CaâvO2) might be a good surrogate for respiratory quotient (RQ). Yet PvâaCO2/CaâvO2 might be increased by other factors, regardless of anaerobic metabolism. At present, comparisons between PvâaCO2/CaâvO2 and RQ have not been performed. We sought to compare these variables during stepwise hemorrhage and hemodilution. Since anemia predictably produces augmented PvâaCO2 and decreased CaâvO2, our hypothesis was that PvâaCO2/CaâvO2 might be an inadequate surrogate for RQ.
Methods: This is a subanalysis of a previously published study. In anesthetized and mechanically ventilated sheep (n = 16), we compared the effects of progressive hemodilution and hemorrhage by means of expired gases analysis.
Results: There were comparable reductions in oxygen consumption and increases in RQ in the last step of hemodilution and hemorrhage. The increase in PvâaCO2/CaâvO2 was higher in hemodilution than in hemorrhage (1.9 ± 0.2 to 10.0 ± 0.9 vs. 1.7 ± 0.2 to 2.5 ± 0.1, P < 0.0001). The increase in PvâaCO2 was lower in hemodilution (6 ± 0 to 10 ± 1 vs. 6 ± 0 to 17 ± 1 mmHg, P < 0.0001). Venoarterial CO2 content difference and CaâvO2 decreased in hemodilution and increased in hemorrhage (2.6 ± 0.3 to 1.2 ± 0.1 vs. 2.8 ± 0.2 to 6.9 ± 0.5, and 3.4 ± 0.3 to 1.0 ± 0.3 vs. 3.6 ± 0.3 to 6.8 ± 0.3 mL/dL, P < 0.0001 for both). In hemodilution, PvâaCO2/CaâvO2 increased before the fall in oxygen consumption and the increase in RQ. PvâaCO2/CaâvO2 was strongly correlated with Hb (R2 = 0.79, P < 0.00001) and moderately with RQ (R2 = 0.41, P < 0.0001). A multiple linear regression model found Hb, RQ, base excess, and mixed venous oxygen saturation and PCO2 as PvâaCO2/CaâvO2 determinants (adjusted R2 = 0.86, P < 0.000001).
Conclusions: In hemodilution, PvâaCO2/CaâvO2 was considerably increased, irrespective of the presence of anaerobic metabolism. PvâaCO2/CaâvO2 is a complex variable, which depends on several factors. As such, it was a misleading indicator of anaerobic metabolism in hemodilution.Facultad de Ciencias MĂ©dica
Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study
Background: The identification of anaerobic metabolism in critically ill patients is a challenging task. Observational studies have suggested that the ratio of venoarterial PCO2 (PvâaCO2) to arteriovenous oxygen content difference (CaâvO2) might be a good surrogate for respiratory quotient (RQ). Yet PvâaCO2/CaâvO2 might be increased by other factors, regardless of anaerobic metabolism. At present, comparisons between PvâaCO2/CaâvO2 and RQ have not been performed. We sought to compare these variables during stepwise hemorrhage and hemodilution. Since anemia predictably produces augmented PvâaCO2 and decreased CaâvO2, our hypothesis was that PvâaCO2/CaâvO2 might be an inadequate surrogate for RQ.
Methods: This is a subanalysis of a previously published study. In anesthetized and mechanically ventilated sheep (n = 16), we compared the effects of progressive hemodilution and hemorrhage by means of expired gases analysis.
Results: There were comparable reductions in oxygen consumption and increases in RQ in the last step of hemodilution and hemorrhage. The increase in PvâaCO2/CaâvO2 was higher in hemodilution than in hemorrhage (1.9 ± 0.2 to 10.0 ± 0.9 vs. 1.7 ± 0.2 to 2.5 ± 0.1, P < 0.0001). The increase in PvâaCO2 was lower in hemodilution (6 ± 0 to 10 ± 1 vs. 6 ± 0 to 17 ± 1 mmHg, P < 0.0001). Venoarterial CO2 content difference and CaâvO2 decreased in hemodilution and increased in hemorrhage (2.6 ± 0.3 to 1.2 ± 0.1 vs. 2.8 ± 0.2 to 6.9 ± 0.5, and 3.4 ± 0.3 to 1.0 ± 0.3 vs. 3.6 ± 0.3 to 6.8 ± 0.3 mL/dL, P < 0.0001 for both). In hemodilution, PvâaCO2/CaâvO2 increased before the fall in oxygen consumption and the increase in RQ. PvâaCO2/CaâvO2 was strongly correlated with Hb (R2 = 0.79, P < 0.00001) and moderately with RQ (R2 = 0.41, P < 0.0001). A multiple linear regression model found Hb, RQ, base excess, and mixed venous oxygen saturation and PCO2 as PvâaCO2/CaâvO2 determinants (adjusted R2 = 0.86, P < 0.000001).
Conclusions: In hemodilution, PvâaCO2/CaâvO2 was considerably increased, irrespective of the presence of anaerobic metabolism. PvâaCO2/CaâvO2 is a complex variable, which depends on several factors. As such, it was a misleading indicator of anaerobic metabolism in hemodilution.Facultad de Ciencias MĂ©dica
Effects of levosimendan and dobutamine in experimental acute endotoxemia : A preliminary controlled study
Objective: To test the hypothesis that levosimendan increases systemic and intestinal oxygen delivery (DO2) and prevents intramucosal acidosis in septic shock. Design: Prospective, controlled experimental study. Setting: University-based research laboratory. Subjects: Nineteen anesthetized, mechanically ventilated sheep. Interventions: Endotoxin-treated sheep were randomly assigned to three groups: control (n = 7), dobutamine (10 ÎŒg/kg/min, n = 6) and levosimendan (100 ÎŒg/kg over 10 min followed by 100 ÎŒg/kg/h, n = 6) and treated for 120 min. Measurements and main results: After endotoxin administration, systemic and intestinal DO 2 decreased (24.6 ± 5.2 vs 15.3 ± 3.4 ml/kg/min and 105.0 ± 28.1 vs 55.8 ± 25.9 ml/kg/min, respectively; p < 0.05 for both). Arterial lactate and the intramucosalâarterial PCO2 difference (âPCO2) increased (1.4 ± 0.3 vs 3.1 ± 1.5 mmHg and 9 ± 6 vs 23 ± 6 mmHg mmol/l, respectively; p < 0.05). Systemic DO 2 was preserved in the dobutamine-treated group (22.3 ± 4.7 vs 26.8 ± 7.0 ml/min/kg, p = NS) but intestinal DO 2 decreased (98.9 ± 0.2 vs 68.0 ± 22.9 ml/min/kg, p < 0.05) and âPCO 2 increased (12 ± 5 vs 25 ± 11 mmHg, p < 0.05). The administration of levosimendan prevented declines in systemic and intestinal DO 2 (25.1 ± 3.0 vs 24.0 ± 6.3 ml/min/kg and 111.1 ± 18.0 vs 98.2 ± 23.1 ml/min/kg, p = NS for both) or increases in âPCO2 (7 ± 7 vs 10 ± 8, p = NS). Arterial lactate increased in both the dobutamine and levosimendan groups (1.6 ± 0.3 vs 2.5 ± 0.7 and 1.4 ± 0.4 vs. 2.9 ± 1.1 mmol/l, p = NS between groups). Conclusions: Compared with dobutamine, levosimendan increased intestinal blood flow and diminished intramucosal acidosis in this experimental model of sepsis.Facultad de Ciencias MĂ©dica